首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of G-quadruplex DNA with the macrocyclic compound BOQ1, which possesses two dibenzophenanthroline (quinacridine) subunits, has been investigated by a variety of methods. The oligonucleotide 5'-A(GGGT(2)A)(3)G(3), which mimics the human telomeric repeat sequence and forms an intramolecular quadruplex, was used as one model system. Equilibrium binding constants measured by biosensor surface plasmon resonance (SPR) methods indicate a high affinity of the macrocycle for the quadruplex conformation (K > 1 x 10(7) M(-)(1)) with two equivalent binding sites. The affinity of BOQ1 for DNA duplexes is at least 1 order of magnitude lower. In addition, the macrocycle is more selective than the monomeric control compound (MOQ2), which is not able to discriminate between the two DNA structures (K(duplex) approximately K(quadruplex) approximately 10(6) M(-)(1)). Strong binding of BOQ1 to G4 DNA sequences was confirmed by fluorometric titrations with a tetraplex-forming oligonucleotide. Competition dialysis experiments with a panel of different DNA structures, from single strands to quadruplexes, clearly established the quadruplex binding specificity of BOQ1. Fluorescence resonance energy transfer (FRET) T(m) experiments with a doubly labeled oligonucleotide also revealed a strong stabilization of the G4 conformation in the presence of BOQ1 (DeltaT(m) = +28 degrees C). This DeltaT(m) value is one of the highest values measured for a G-quadruplex ligand and is significantly higher than observed for the monomer control compounds (DeltaT(m) = +10-12 degrees C). Gel mobility shift assays indicated that the macrocycle efficiently induces the formation of G-tetraplexes. Strong inhibition of telomerase was observed in the submicromolar range (IC(50) = 0.13 microM). These results indicate that macrocycles represent an exciting new development opportunity for targeting DNA quadruplexes.  相似文献   

2.
Ab initio calculations at the MP2/6-311+G(2d,2p) and the empirical water many-body model TCPE have been applied to the study of four water tetramers corresponding to various molecular arrangements. For the cyclic tetramer (where each molecule is simultaneously donor and acceptor of hydrogen bonds, HBs), cooperative effects have been shown from ab initio computations to be stabilizing and to represent a contribution in the binding energy of 9 kcal mol−1, while for the tetramer where only two molecules are simultaneously donor and acceptor of HB, such effects are stabilizing by only 1.5 kcal mol−1. At last, for the tetramer where no molecule is simultaneously donor and acceptor of HBs, cooperative effects are smoothly destabilizing. TCPE predictions have been shown to be in good agreement with these ab initio estimates, both in terms of binding energy and cooperative effect contribution, which exhibits the accuracy of this potential.  相似文献   

3.
We describe a general multinuclear (1H, 23Na, 87Rb) NMR approach for direct detection of alkali metal ions bound to G-quadruplex DNA. This study is motivated by our recent discovery that alkali metal ions (Na+, K+, Rb+) tightly bound to G-quadruplex DNA are actually "NMR visible" in solution (Wong, A.; Ida, R.; Wu, G. Biochem. Biophys. Res. Commun. 2005, 337, 363). Here solution and solid-state NMR methods are developed for studying ion binding to the classic G-quadruplex structures formed by three DNA oligomers: d(TG4T), d(G4T3G4), and d(G4T4G4). The present study yields the following major findings. (1) Alkali metal ions tightly bound to G-quadruplex DNA can be directly observed by NMR in solution. (2) Competitive ion binding to the G-quadruplex channel site can be directly monitored by simultaneous NMR detection of the two competing ions. (3) Na+ ions are found to locate in the diagonal T4 loop region of the G-quadruplex formed by two strands of d(G4T4G4). This is the first time that direct NMR evidence has been found for alkali metal ion binding to the diagonal T4 loop in solution. We propose that the loop Na+ ion is located above the terminal G-quartet, coordinating to four guanine O6 atoms from the terminal G-quartet and one O2 atom from a loop thymine base and one water molecule. This Na+ ion coordination is supported by quantum chemical calculations on 23Na chemical shifts. Variable-temperature 23Na NMR results have revealed that the channel and loop Na+ ions in d(G4T4G4) exhibit very different ion mobilities. The loop Na+ ions have a residence lifetime of 220 micros at 15 degrees C, whereas the residence lifetime of Na+ ions residing inside the G-quadruplex channel is 2 orders of magnitude longer. (4) We have found direct 23Na NMR evidence that mixed K+ and Na+ ions occupy the d(G4T4G4) G-quadruplex channel when both Na+ and K+ ions are present in solution. (5) The high spectral resolution observed in this study is unprecedented in solution 23Na NMR studies of biological macromolecules. Our results strongly suggest that multinuclear NMR is a viable technique for studying ion binding to G-quadruplex DNA.  相似文献   

4.
Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2′-bipyridin]-6-yl)phenyl tridentate (NNC) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) G-quadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (Ka) in the range of 2–5×105 M−1, lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNA-melting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔTm>30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the c-myc G-quadruplex thymine ‘cap’ (‘open’ vs. ‘closed’), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.  相似文献   

5.
Selective interactions of cationic porphyrins with G-quadruplex structures   总被引:11,自引:0,他引:11  
G-quadruplex DNA presents a potential target for the design and development of novel anticancer drugs. Because G-quadruplex DNA exhibits structural polymorphism, different G-quadruplex typologies may be associated with different cellular processes. Therefore, to achieve therapeutic selectivity using G-quadruplexes as targets for drug design, it will be necessary to differentiate between different types of G-quadruplexes using G-quadruplex-interactive agents. In this study, we compare the interactions of three cationic porphyrins, TMPyP2, TMPyP3, and TMPyP4, with parallel and antiparallel types of G-quadruplexes using gel mobility shift experiments and a helicase assay. Gel mobility shift experiments indicate that TMPyP3 specifically promotes the formation of parallel G-quadruplex structures. A G-quadruplex helicase unwinding assay reveals that the three porphyrins vary dramatically in their abilities to prevent the unwinding of both the parallel tetrameric G-quadruplex and the antiparallel hairpin dimer G-quadruplex DNA by yeast Sgs1 helicase (Sgs1p). For the parallel G-quadruplex, TMPyP3 has the strongest inhibitory effect on Sgs1p, followed by TMPyP4, but the reverse is true for the antiparallel G-quadruplex. TMPyP2 does not appear to have any effect on the helicase-catalyzed unwinding of either type of G-quadruplex. Photocleavage experiments were carried out to investigate the binding modes of all three porphyrins with parallel G-quadruplexes. The results reveal that TMPyP3 and TMPyP4 appear to bind to parallel G-quadruplex structures through external stacking at the ends rather than through intercalation between the G-tetrads. Since intercalation between G-tetrads has been previously proposed as an alternative binding mode for TMPyP4 to G-quadruplexes, this mode of binding, versus that determined by a photocleavage assay described here (external stacking), was subjected to molecular dynamics calculations to identify the relative stabilities of the complexes and the factors that contribute to these differences. The DeltaG(o) for the external binding mode was found to be driven by DeltaH(o) with a small unfavorable TDeltaS(o) term. The DeltaG(o) for the intercalation binding model was driven by a large TDeltaS(o) term and complemented by a small DeltaH(o) term. One of the main stabilizing components of the external binding model is the energy of solvation, which favors the external model over the intercalation model by -67.94 kcal/mol. Finally, we propose that intercalative binding, although less favored than external binding, may occur, but because of the nature of the intercalative binding, it is invisible to the photocleavage assay. This study provides the first experimental insight into how selectivity might be achieved for different G-quadruplexes by using structural variants within a single group of G-quadruplex-interactive drugs.  相似文献   

6.
A series of aminoglycoside-capped macrocyclic structures has been prepared using intramolecular bis-tethering of neomycin on three aromatic platforms (phenanthroline, acridine, quinacridine). Based on NMR and calculations studies, it was found that the cyclic compounds adopt a highly flexible structure without conformational restriction of the aminoglycoside moiety. FRET-melting stabilization measurements showed that the series displays moderate to high affinity for the G4-conformation of human telomeric repeats, this effect being correlated with the size of the aromatic moiety. In addition, a FRET competition assay evidenced the poor binding ability of all macrocycles for duplex DNA and a clear binding preference for loop-containing intramolecular G4 structures compared to tetramolecular parallel G4 DNA. Finally, TRAP experiments demonstrated that the best G4-binder (quinacridine ) is also a potent and selective telomerase inhibitor with an IC(50) in the submicromolar range (200 nM).  相似文献   

7.
8.
Two symmetric ditopic supramolecular templates (1 and 2) each presenting two hydrogen bonding recognition subunits were synthesized. Each such subunit comprises the same donor and acceptor pattern, capable of binding a substrate molecule with complementary hydrogen bonding groups to form a supramolecular complex. Substrate molecules, such as thymine or uracil derivatives, yield 2 : 1 complexes with the acceptors involving two hydrogen bonds to each subunit with ideal orientation for subsequent [2 + 2] dimerization upon photoirradiation. Selective syn photoproduct formation and concomitant suppression of the trans isomer are favored by orientation of the two guest nucleobases within the template cleft. Complementary donor and acceptor hydrogen bonding induced positioning of the two substrates and steric hindrance within the template clefts are responsible for the selective product formation.  相似文献   

9.
The dimeric G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (S1) and d(GTGGTGGGTGGGTGGGT) (S2), the potent nanomolar HIV-1 integrase inhibitors, were detected by electrospray ionization mass spectrometry (ESI-MS) for the first time. The formation and conversion of the dimers were induced by NH(4)(+), DNA concentration, pH, and the binding molecules. We directly observed the specific binding of a perylene derivative (Tel03) and ImImImbetaDp in one system consisting of the intramolecular and the dimeric G-quadruplexes of the HIV-1 integrase inhibitor, which suggested that Tel03 could shift the equilibrium to the dimeric G-quadruplex formation, while ImImImbetaDp induces preferentially a structural change from the dimer to the intramolecular G-quadruplex. The results of this study indicated that Tel03 and ImImImbetaDp favor the stabilization of the dimeric G-quadruplex structures.  相似文献   

10.
A new donor‐DNA‐acceptor system has been synthesized containing Nile red‐modified 2′‐deoxyuridine as charge donor and 6‐N,N‐dimethylaminopyrene‐modified 2′‐deoxyuridine as acceptor to investigate the charge transfer in DNA duplexes using fluorescence spectroscopy and time‐resolved femtosecond pump‐probe techniques. Fluorescence quenching experiments revealed that the quenching efficiency of Nile red depends on two components: 1) the presence of a charge acceptor and 2) the number of intervening CG and AT base pairs between donor and acceptor. Surprisingly, the quenching efficiency of two base pairs (73 % for CG and the same for AT) is higher than that for one base pair (68 % for CG and 37 % for AT), while at a separation of three base pairs less than 10 % quenching is observed. A comparison with the results of time‐resolved measurements revealed a correlation between quenching efficiency and the first ultrafast time constant suggesting that quenching proceeds via a charge transfer from the donor to the acceptor. All transients are satisfactorily described with two decays: a rapid charge transfer with 600 fs (~1012 s?1) that depends strongly and in a non‐linear fashion on the distance between donor and acceptor, and a slower time constant of a few picoseconds (~1011 s?1) with weak distance dependence. A third time constant on a nanosecond time scale represents the fluorescence lifetime of the donor molecule. According to these results and time‐dependent density functional theory (TDDFT) calculations a combination of single‐step superexchange and multistep hopping mechanisms can be proposed for this short‐range charge transfer. Furthermore, significantly less quenching efficiency and slower charge transfer rates at very short distances indicate that the direct interaction between donor and acceptor leads to a local structural distortion of DNA duplexes which may provide some uncertainty in identifying the charge transfer rates in short‐range systems.  相似文献   

11.
All‐polymer solar cells (all‐PSCs) offer unique morphology stability for the application as flexible devices, but the lack of high‐performance polymer acceptors limits their power conversion efficiency (PCE) to a value lower than those of the PSCs based on fullerene derivative or organic small molecule acceptors. We herein demonstrate a strategy to synthesize a high‐performance polymer acceptor PZ1 by embedding an acceptor–donor–acceptor building block into the polymer main chain. PZ1 possesses broad absorption with a low band gap of 1.55 eV and high absorption coefficient (1.3×105 cm−1). The all‐PSCs with the wide‐band‐gap polymer PBDB‐T as donor and PZ1 as acceptor showed a record‐high PCE of 9.19 % for the all‐PSCs. The success of our polymerization strategy can provide a new way to develop efficient polymer acceptors for all‐PSCs.  相似文献   

12.
A symmetric ditopic molecular receptor (3), containing two identical hydrogen-bonding recognition subunits, was designed and synthesized. These subunits are capable of binding substrates with complementary donor and acceptor sites to form a supramolecular complex through hydrogen bonding. Receptor 3 was designed to accept two guest molecules, which are held in close proximity within the supramolecular species. The substrate molecule, 4-methyl-7-O-hexylcoumarin (1 c), forms a 2:1 complex with a binding constant of 150 m(-1) for the second substrate, passing first through a 1:1 complex with an affinity constant of 510 m(-1). The orientation of two molecules of 1 c when bound to the template leads to the selective formation of the trans-syn [2+2] photoproduct 2 cB upon irradiation. Other photoproducts typically produced in the absence of the template are suppressed.  相似文献   

13.
Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the self-association, G-quadruplex DNA binding, and selectivity of a series of perylene diimides (PDIs) (PIPER, Tel01, Tel11, Tel12, and Tel18) or benzannulated perylene diimide ligands (Tel34 and Tel32). Fluorescence and resonance light scattering spectra of Tel01, Tel12, Tel32, and Tel34 reveal that these analogs undergo self-association in solution. UV-Vis and fluorescence titrations with G-quadruplex, duplex, or single-stranded DNA demonstrate that all the analogs, with the exception of Tel32, bind to G-quadruplex DNA, with those PDIs that are self-associated in solution showing the highest degree of selectivity for binding G-quadruplex DNA. Parallel ESI-MS analysis of the stoichiometries demonstrates the ability of the ligands, with the exception of Tel32, to bind to G-quadruplex DNA. While most ligands show major 1:1 and 2:1 binding stoichiometries as expected in the case of end-stacking, interestingly, three of the most quadruplex-selective ligands show a different behavior. Tel01 forms 3:1 complexes, while Tel12 and Tel32 only form 1:1 complexes. Collisional activation dissociation patterns are compatible with ligand binding to G-quadruplex DNA via stacking on the ends of the terminal G-tetrads. Experiments with duplex and single strand DNA were performed to assess the binding selectivities of the ligands. PIPER, Tel11, and Tel18 demonstrated extensive complexation with duplex DNA, while Tel11 and Tel18 bound to single strand DNA, confirming the lack of selectivity of these two ligands. Our results indicate that Tel01, Tel12, and Tel34 are the most selective for G-quadruplex DNA.  相似文献   

14.
A new fluorescent peptidyl chemosensor based on the mercury binding MerP protein with fluorescence resonance energy transfer (FRET) capabilities has been synthesized via Fmoc solid-phase peptide synthesis. The metal chelating unit, which is flanked by the fluorophores tryptophan (donor) and dansyl (acceptor), contains amino acids from MerP's metal binding loop (sequence: dansyl-Gly-Gly-Thr-Leu-Ala-Val-Pro-Gly-Met-Thr-Cys-Ala-Ala-Cys-Pro-Ile-Thr-Val-Lys-Lys-Gly-Gly-Trp-CONH(2)). A FRET enhancement or 'turn-on' response was observed for Hg(2+) as well as for Zn(2+), Cd(2+) and Ag(+) in a pure aqueous solution at pH 7.0. The emission intensity of the acceptor was used to monitor the concentration of these metals ions with detection limits of 280, 6, 103 and 496 microg L(-1), respectively. No response was observed for the other transition, alkali and alkaline earth metals tested. The fluorescent enhancement observed is unique for Hg(2+) since this metal generally quenches fluorescence. The acceptor fluorescence increase resulting from metal binding-induced FRET suggests a sensor that is inherently more sensitive than one based on quenching by the binding event.  相似文献   

15.
A solution-state NMR study on 15NH4(+) ion movement within d(G(3)T(4)G(4))(2), a dimeric G-quadruplex consisting of three G-quartets and two T(4) loops, rather unexpectedly demonstrated the absence of 15NH4(+) ion movement between the binding sites U and L along the central axis of the G-quadruplex. Distinct temperature dependences of autocorrelation signals for U and L binding sites have been observed in 15N-1H NzExHSQC spectra which correlate with the local stiffness of the G-quadruplex. The volumes of the cross-peaks, which are the result of 15NH4(+) ion movement, have been interpreted in terms of rate constants, T(1) relaxation, and proton exchange. 15NH4(+) ion movements from the binding sites U and L into the bulk solution are characterized by lifetimes of 139 ms and 1.7 s at 298 K, respectively. The 12 times faster movement from the binding site U demonstrates that 15NH4(+) ion movement is controlled by the structure of T4 loop residues, which through diagonal- vs edge-type orientations impose distinct steric restraints for cations to leave or enter the G-quadruplex. Arrhenius-type analysis has afforded an activation energy of 66 kJ mol(-)1 for the UB process, while it could not be determined for the LB process due to slow rates at temperatures below 298 K. We further the use of the 15NH4(+) ion as an NMR probe to gain insight into the occupancy of binding sites by cations and kinetics of ion movement which are intrinsically correlated with the structural details, dynamic fluctuations, and local flexibility of the DNA structure.  相似文献   

16.
Combining various techniques in solution we proved that Doxorubicin, also called Adriamycin, and Sabarubicin, also known as MEN 10755, bind to the human telomeric sequence, 5'-d[GGG(TTAGGG)(3)]-3' (21-mer), assuming a G-quadruplex structure in the presence of K(+). Complexes of drugs with the 21-mer in 1?:?1 and 2?:?1 stoichiometry coexist in solution. Association constants were obtained from titration experiments and confirmed by isothermal titration calorimetry. The fluorescence of the drugs was quenched upon complexation. UV circular dichroism (CD) spectra of the complexes were characterized by the G-quadruplex signal and indicated that drug binding influences the equilibrium between quadruplex conformations. The visible CD spectra were exclusively due to the drug and show differences in the complexation modes of the two drugs. Spectroscopic and thermodynamic parameters of the 1?:?1 complexes point to drug stacking with the G-quadruplex top or bottom tetrad. Thermodynamic data suggests that the binding of the second drug molecule in the 2?:?1 complex may occur in a groove. Complexation caused a small increase in the thermal stability of the G-quadruplex main conformation, shifting T(m) from 62 to 67 °C.  相似文献   

17.
近年来,聚二乙炔的一维特性引起了人们的注意.为了探索这类给体与有机受体形成的电荷转移复合物,从而获得高电导的聚二乙炔单晶,我们采用X射线衍射法对标题复合物进行了晶体结构测定.本文主要叙述该复合物的分子结构和晶体结构.实验部分一、样品制备将82毫克咔唑二乙炔[1,6-di-(N-Carbazolyl-)2,4-hexadiyne,简称DCH],126毫克三硝基芴酮[2,4,7-trinitrofluorenone,简称TNF]分别溶解在25毫升和15毫升分析纯丙酮中,  相似文献   

18.
Three-dimensional quantitative structure-activity relationship models have been derived using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for two training sets of arylsulfonyl isoquinoline-based and thazine/thiazepine-based matrix metalloproteinase inhibitors (MMPIs). The crystal structure of stromelysin-1 (MMP-3) was used to pinpoint areas on the ligands and receptors where steric and electrostatic effects (for CoMFA) and steric, electrostatic, hydrogen-bond donor, hydrogen-bond acceptor, and hydrophobic effects (for CoMSIA) correlate with an increase or decrease in experimental biological activity. The most predictive CoMFA and CoMSIA models were obtained using training-series subsets that sampled a wide range of activities, together with docking and scoring, inertial alignment, investigation of various partial charge formalisms, and manual adjustment of each compound within the active site. The models developed in this study are in agreement with experimentally observed MMP-3 structure-activity relationship data and offer new insights into binding modes involving the partly solvent-exposed S1-S2' subpocket and certain zinc-chelating groups.  相似文献   

19.
《Polyhedron》1999,18(8-9):1097-1106
An extension to the Electrostatic-Covalent model is proposed for the prediction of physicochemical properties and enthalpies of interaction for two donor molecules reacting with a single acceptor molecule. The coordination of the first base modifies the acceptor tendencies for binding a second base. Each different base forms a different acceptor for coordinating the second base, so in any model different acceptor parameters are required for the second step for each base. An E and C based model is derived to reflect this behavior and is applied to several 2:1 adducts providing a new interpretation of their reactivity. Literature correlations of 2:1 adducts which use a single average acceptor parameter for the sum of the two steps do not reflect this behavior so the meaning of the fit and the resulting parameters are not clear. Furthermore, since an average does not reflect a different acceptor parameter in the second step for each base the cause of deviations in such a fit is not clear. The model is extended to encompass reactivity of bidentate phosphines. Donor parameters are reported for the first coordination step of bidentate phosphines. The second step of bidentate donor binding is affected by the strength of the acceptor interaction in the first step. Equations are derived to correlate the total enthalpies of reaction of bidentate phosphines. Some generalizations concerning reactivity can be made but limited data precludes a thorough evaluation of the model.  相似文献   

20.
To acquire accurate structural and dynamical information on complex biomolecular machines using single-molecule fluorescence resonance energy transfer (sm-FRET), a large flux of donor and acceptor photons is needed. To achieve such fluxes, one may use higher laser excitation intensity; however, this induces increased rates of photobleaching. Anti-oxidant additives have been extensively used for reducing acceptor's photobleaching. Here we focus on deciphering the initial step along the photobleaching pathway. Utilizing an array of recently developed single-molecule and ensemble spectroscopies and doubly labeled Acyl-CoA binding protein and double-stranded DNA as model systems, we study these photobleaching pathways, which place fundamental limitations on sm-FRET experiments. We find that: (i) acceptor photobleaching scales with FRET efficiency, (ii) acceptor photobleaching is enhanced under picosecond-pulsed (vs continuous-wave) excitation, and (iii) acceptor photobleaching scales with the intensity of only the short wavelength (donor) excitation laser. We infer from these findings that the main pathway for acceptor's photobleaching is through absorption of a short wavelength photon from the acceptor's first excited singlet state and that donor's photobleaching is usually not a concern. We conclude by suggesting the use of short pulses for donor excitation, among other possible remedies, for reducing acceptor's photobleaching in sm-FRET measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号