首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The completion of the total syntheses of the CP-molecules is reported. Several strategies and tactics, including the use of amide-based protecting groups for the homologated C-29 carboxylic acid and the use of an internal pyran protecting group scheme, are discussed. The endeavors leading to the design of new methods for the homologation of hindered aldehydes and to the isolation of a polycyclic byproduct (23), which inspired the development of a new series of reactions based on iodine(V) reagents, are described. In addition, the discovery and development of the LiOH-mediated conversion of CP-263,114 (1) to CP-225,917 (2) is described, and a mechanistic rationale is presented. Finally, a synthetic route to complex analogues of the CP-molecules harboring a maleimide moiety in place of the maleic anhydride is presented.  相似文献   

2.
Crucial model synthetic and mechanistic studies directed toward the development of methodology for the construction of the maleic anhydride moiety of the CP-molecules are described. Studies directed toward the stereoselective attachment of the upper side chain, culminating in the discovery of long-range stereochemical control, are also discussed. In addition, a first-generation strategy toward the CP-molecules, establishing key intermediate 5 as a "beachhead" from which all future operations would diverge, is also presented. Although this first-generation strategy failed to yield the target molecules, the endeavor laid the important groundwork for the next-generation drives toward the CP-molecules.  相似文献   

3.
Asymmetric synthesis of a functionalised cyclohexenone required for total synthesis of CP-225,917 and CP-263,114 is reported, using a Lewis acid-promoted Diels-Alder reaction between a 2-silyloxy-1,3-diene and a dienophile bearing an oxazolidinone auxiliary. A novel method for appendage of the exocyclic malonate unit, via cyclopropane ring opening, is also described.  相似文献   

4.
5.
The cyanosubstituted trimethylenemethane donor undergoes palladium-catalyzed [6 + 3] cycloaddition with a variety of tropones to yield bicyclo[4.3.1]decadienes in excellent regio-, diastereo-, and enantioselectivity. Products of the Pd-TMM [6 + 3] cycloaddition participate in a thermal [3,3] sigmatropic rearrangement to yield bicyclo[3.3.2]decadienes in good yield.  相似文献   

6.
Ti(II)-mediated tandem cyclization of (E)-5-(tert-butyldimethylsilyloxy)-8-trimethylsilyl-2-octen-7-ynoate (7) prepared from commercially available optically active epichlorohydrin (2) proceeded diastereoselectively to provide 7-(tert-butyldimethylsilyloxy)-2-trimethylsilylbicyclo[3.3.0]oct-1-en-3-one (1), which serves as a useful chiral building block or intermediate to prepare a variety of compounds having a bicyclo[3.3.0]octane framework.  相似文献   

7.
The completion of the total synthesis of thiostrepton (1) is described. The synthesis proceeded from key building blocks 2-5, which were assembled into a growing substrate that finally led to the target molecule. Thus, the dehydropiperidine peptide core 2 was, after appropriate manipulation, coupled to the thiazoline-thiazole fragment 3, and the resulting product was advanced to intermediate 11 possessing the thiazoline-thiazole macrocycle. The bis-dehydroalanine tail equivalent 4 and the quinaldic acid fragment 5 were then sequentially incorporated, and the products so obtained were further elaborated to forge the second macrocycle of the molecule. Several roadblocks encountered along the way were systematically investigated and overcome, finally opening the way, through intermediates 20, 32, 44, 45, and 46, to the targeted natural product, 1.  相似文献   

8.
The application of a [6+4] cycloaddition strategy toward the synthesis of CP-225,917 is described.  相似文献   

9.
The first phase of the total synthesis of thiostrepton (1), a highly complex thiopeptide antibiotic, is described. After a brief introduction to the target molecule and its structural motifs, it is shown that retrosynthetic analysis of thiostrepton reveals compounds 23, 24, 26, 28, and 29 as potential key building blocks for the projected total synthesis. Concise and stereoselective constructions of all these intermediates are then described. The synthesis of the dehydropiperidine core 28 was based on a biosynthetically inspired aza-Diels-Alder dimerization of an appropriate azadiene system, an approach that was initially plagued with several problems which were, however, resolved satisfactorily by systematic investigations. The quinaldic acid fragment 24 and the thiazoline-thiazole segment 26 were synthesized by a series of reactions that included asymmetric and other stereoselective processes. The dehydroalanine tail precursor 23 and the alanine equivalent 29 were also prepared from the appropriate amino acids. Finally, a method was developed for the direct coupling of the labile dehydropiperidine key building block 28 to the more advanced and stable peptide intermediate 27 through capture with the highly reactive alanine equivalent 67 under conditions that avoided the initially encountered destructive ring contraction process.  相似文献   

10.
The highly functionalized core structure of phomoidride B (CP-263,114) was pursued by using intermolecular oxidopyrylium-alkene cyclization as one of the key steps.  相似文献   

11.
Syntheses of the three key building blocks (65, 98, and 100) required for the total synthesis of the proposed structure of azaspiracid-1 (1a) are described. Key steps include a TMSOTf-induced ring-closing cascade to form the ABC rings of tetracycle 65, a neodymium-catalyzed internal aminal formation for the construction of intermediate 98, and a Nozaki-Hiyama-Kishi coupling to assemble the required carbon chain of fragment 100. The synthesized fragments, obtained stereoselectively in both their enantiomeric forms, were expected to allow for the construction of all four stereoisomers proposed as possible structures of azaspiracid-1 (1a-d), thus allowing the determination of both the relative and absolute stereochemistry of the natural product.  相似文献   

12.
13.
14.
An acid-catalyzed Dieckmann-type reaction has been developed to access functionalized bicyclo[3.2.1]alkenediones. This methodology has been successfully extended to more substituted and larger ring homologues, providing a new and efficient route to the core of numerous attractive natural products and their analogues.  相似文献   

15.
The addition reactions of α,β-unsaturated carbonyl compounds with dichloromethyl p-tolyl sulfoxide in the presence of NaHMDS or LDA resulted in the formation of adducts, 1-chlorocyclopropyl p-tolyl sulfoxides bearing a carbonyl group at the 2-position, in almost quantitative yields. The carbonyl group of the adducts was transformed to various ether groups to give 1-chlorocyclopropyl p-tolyl sulfoxides bearing an ether functional group at the 2-position in short steps. Treatment of these products with i-PrMgCl at low temperature afforded cyclopropylmagnesium carbenoids via the sulfoxide-magnesium exchange reaction. 1,5-Carbon–hydrogen insertion (1,5-CH insertion) reaction of the generated magnesium carbenoid intermediates took place to give 3-oxabicyclo[3.1.0]hexanes or bicyclo[3.1.0]hexanes bearing an ether group at the 4-position in moderate to good yields. When this procedure was carried out starting with enantiopure dichloromethyl p-tolyl sulfoxide, enantiopure 3-oxabicyclo[3.1.0]hexanes were obtained in good overall yields. These procedures provide a good way for the synthesis, including asymmetric synthesis, of multisubstituted 3-oxabicyclo[3.1.0]hexanes and bicyclo[3.1.0]hexanes from α,β-unsaturated carbonyl compounds and dichloromethyl p-tolyl sulfoxide in short steps.  相似文献   

16.
Full details of the total synthesis of piericidin A1 and B1 and its extension to the preparation of a series of key analogues are described including ent-piericidin A1 (ent-1), 4'-deshydroxypiericidin A1 (58), 5'-desmethylpiericidin A1 (73), 4'-deshydroxy-5'-desmethylpiericidin A1 (75), and the corresponding analogues 51, 59, 76, and 77 bearing a simplified farnesyl side chain. The evaluation of these key analogues, along with those derived from their further functionalizations, permitted a scan of the key structural features providing new insights into the role of the substituents found in both the pyridyl core as well as the side chain. A strategic late stage heterobenzylic Stille cross-coupling reaction of the pyridyl core with the fully elaborated side chain permitted ready access to the analogues in which each half of the molecule could be systematically and divergently modified. The pyridyl cores were assembled enlisting inverse electron demand Diels-Alder reactions of N-sulfonyl-1-azabutadienes, while key elements of side chain syntheses include an anti selective asymmetric aldol to install the C9 and C10 relative and absolute stereochemistry (for natural and ent-1) and a modified Julia olefination for formation of the C5-C6 trans double bond with convergent assemblage of the side chains.  相似文献   

17.
Treatment of 1-chlorovinyl p-tolyl sulfoxides, which were synthesized from various cyclic ketones and chloromethyl p-tolyl sulfoxide in three steps, in high yields, with lithium enolate of tert-butyl acetate or its homologues gave the adducts in quantitative yields. The adducts were treated with isopropylmagnesium chloride in ether in dry toluene as the reaction solvent to afford bicyclo[n.1.0]alkanes in high to quantitative yields via magnesium carbenoid 1,3-CH insertion. When this method was carried out starting from unsymmetrical cyclic ketones and (R)-chloromethyl p-tolyl sulfoxide, an asymmetric synthesis of bicyclo[n.1.0]alkane was realized.  相似文献   

18.
6-exo-Methylbicyclo[3.2.0]hepten-7-ones and their 2-alkylidene analogues are readily prepared from dialkyl squarates. These compounds undergo facial oxy-Cope ring expansions upon treatment with vinyllithium; the former leads to bicyclo[4.2. 1]non-1(4)-en-6-ones and the latter to the first examples of bicyclo[5.2.1]dec-1(10)-en-5-ones, compounds having exceptionally strained bridgehead double bonds. The transformations are controlled by the 6-exo-methyl group in the starting material along with the substituent at position-1 (bridgehead) which force attack of the lithium reagent from the concave face of the starting material, thus allowing the cyclopentenyl or alkylidene groups to participate in the sigmatropic event.  相似文献   

19.
20.
The development and design of reliable and efficient methods for the construction of chiral building blocks are crucial in modern natural product synthesis. 8-Oxabicyclo[3.2.1]oct-6-en-3-ones are readily accessible scaffolds with defined stereochemical features which have been exploited for non-aldol approaches to the preparation of chiral building blocks. Strategies for their enantioselective synthesis, including asymmetric cycloaddition methods, desymmetrization protocols, and "racemic switch operations", are presented and evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号