首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium chloride and bromide, (NH4)Cl and (NH4)Br, act on elemental iron producing divalent iron in [Fe(NH3)2]Cl2 and [Fe(NH3)2]Br2, respectively, as single crystals at temperatures around 450 °C. Iron(III) chloride and bromide, FeCl3 and FeBr3, react with (NH4)Cl and (NH4)Br producing the erythrosiderites (NH4)2[Fe(NH3)Cl5] and (NH4)2[Fe(NH3)Br5], respectively, at fairly low temperatures (350 °C). At higher temperatures, 400 °C, iron(III) in (NH4)2[Fe(NH3)Cl5] is reduced to iron(II) forming (NH4)FeCl3 and, further, [Fe(NH3)2]Cl2 in an ammonia atmosphere. The reaction (NH4)Br + Fe (4:1) leads at 500 °C to the unexpected hitherto unknown [Fe(NH3)6]3[Fe8Br14], a mixed‐valent FeII/FeI compound. Thermal analysis under ammonia and the conditions of DTA/TG and powder X‐ray diffractometry shows that, for example, FeCl2 reacts with ammonia yielding in a strongly exothermic reaction [Fe(NH3)6]Cl2 that at higher temperatures produces [Fe(NH3)]Cl2, FeCl2 and, finally, Fe3N.  相似文献   

2.
The possibility of synthesizing heteronuclear compounds in the systems based on Fe(II), Fe(III), Al(III), SO42−, Cl-H2O-OH, and NH3 was studied. A mathematical model based on data on the potentiometric titration was developed. The elemental and phase composition and the structure of the compounds synthesized were determined by the XPA, DTA and NMR methods to optimize the conditions of the synthesis.  相似文献   

3.
Kinetic parameters (apparent activation energy, reaction order, pre-exponential factor (Z) in the Arrhenius equation) for thermal decomposition of the [Co(NH3)6]Cl3, Co[(NH3)4Cl2]Cl, K3[Fe(C2O4)3]3H2O and Fe(CH3COO)3 are reported. They have been calculated on the DTA and TG data according to Coats-Redfern's model. Both, decomposition data obtained in argon and in air atmosphere have been considered and the results are compared.
Zusammenfassung Es werden die kinetischen Parameter (scheinbare Aktivierungsenergie, Reaktionsordnung, prÄexponentieller Faktor (Z) der Arrhenius-Gleichung) der thermischen Zersetzung von [Co(NH3)6]Cl3, [Co(NH3)4Cl2]Cl, K3[Fe(C2O4)3]3H2O und Fe(CH3COO)3 beschrieben, die entsprechend dem Coats-Redfern-Modell auf der Basis der DTA- und TG-Daten errechnet wurden. Die Zersetzung wurde sowohl in Argon als auch in Luft durchgeführt und die erhaltenen Daten miteinander verglichen.


Helpful comments from Professor W. Wojciechowski and financial support from Institute for Low Temperatures and Structure Research Polish Academy of Sciences (CPBP 01.12) are greatefully acknowledged.  相似文献   

4.
[Fe(Me-phen)Cl4][Me-phen·H] (1) and [Fe(Cl-phen)Cl4][Cl-phen·H] (2) complexes were prepared from the reactions of FeCl3·6H2O with 5-methyl-1,10-phenanthroline (Me-phen) and 5-chloro-1,10-phenanthroline (Cl-phen), respectively, in a 0.1 M aqueous solution of HCl. Stepwise addition of dimethyl sulfoxide to the solution of 1 in methanol results in a mixed ligand complex, [Fe(Me-phen)Cl3(DMSO)] (3). Complex 3 was also prepared by two other methods. The reaction of a methanol solution of [Fe(Me-phen)Cl4][Me-phen·H] (1) with [Fe(DMSO)4Cl2][FeCl4] in 1:6 ratio led to 3. Complex 3 was also prepared from the reaction of 5-methyl-1,10-phenanthroline with [Fe(DMSO)4Cl2][FeCl4] in 1:1 ratio in methanol. The three complexes were characterized by IR, UV–Vis, 1H NMR and luminescence spectroscopy and their structures were studied by the single-crystal diffraction method. Calculation methods were employed to study the isomerization of (3) in solution.  相似文献   

5.
The thermal decomposition studies on 4-methylpiperazine-1-carbodithioic acid ligand (4-MPipzcdtH) and its complexes, viz. [M(4-MPipzcdtH)n](ClO4)n (M=Fe(III) when n=3; M=Co(II), Cu(II) when n=2) and [Zn(4-MPipzcdtH)2]Cl2 have been carried out using non-isothermal techniques (TG and DTA). Initial decomposition temperatures (IDT), indicate that thermal stability is influenced by the change of central metal ion. Free acid ligand exhibits single stage decomposition with a sharp DTA endotherm. Complexes, [M(4-MPipzcdtH)n](ClO4)n undergo single stage decomposition with detonation and give rise to very sharp exothermic DTA curves while the complex [Zn(4-MPipzcdtH)2]Cl2 shows three-stage decomposition patterns. The kinetic and thermodynamic parameters, viz. the energy of activation E, the frequency factor A, entropy of activation S and specific rate constant k, etc. have been evaluated from TG data using Coats and Redfern equation. Based upon the results of the differential thermal analysis study, the [M(4-MPipzcdtH)n](ClO4)n complexes have been found to possess characteristic of high energy materials.  相似文献   

6.
Lead(II) 2,2'-bipyridine hexachloroplumba tetetrahydrate was synthesized and investigated by DTA, TG and DTG. IR spectroscopy and other methods enabled the identification of some of the decomposition products. Comparative studies on the corresponding chlorides: [Pb(bipy)]Cl2 and [Pb(bipy)3]Cl2, which can be considered as precursors of the hexachloroplumbate, were also undertaken. X-ray measurements enabled the tentative determination of the crystal structure of [Pb(bipy)]Cl2. Hexachloroplumbate decomposes with the liberation of chlorine, water and organic ligands, and the process is accompanied by the simultaneous transition of Pb(IV)→Pb(II). Chlorides release only ligands upon heating. Residues comprised always PbCl2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Syntheses and Structure Elucidations of Novel (Ironcarbonyl)zinc and ‐cadmium Chloride Derivatives Reactions of zinc/cadmium chloride with Na2[Fe(CO)4] lead to a number of new (iron carbonyl)zinc/cadmium chlorides, wherein the reaction course depends on the used solvent used. In the reaction of ZnCl2 with Na2[Fe(CO)4], three new substances can be prepared. The compound [Zn2Cl2Fe(CO)4(THF)2] ( 1 ), which consists of neutral polymeres, is formed in THF, the ionic compound [Na(DME)3][Zn2Cl3Fe(CO)4] ( 2 ) forms in DME, and from a mixture of THF and TMEDA the compound [Zn2Cl2Fe(CO)4(TMEDA)2] ( 3 ) is obtained as a monomere. Also by using CdCl2, the reaction with Na2[Fe(CO)4] in THF leads to the polymeric compound ([(Cd4Cl6)Fe(CO)4(THF)5] ( 4 )). Carrying out the reaction in a mixture of toluene and DME leads to the formation of the ionic compound [Na(DME)3]2[Cd6{Fe(CO)4}6Cl2(DME)2] ( 5 ) in which an annular dianion consisting of twelve metal atoms is found. From an aqueous solution and subsequent work‐up in THF, the compound [Fe(THF)4(H2O)2][Cd8{Fe(CO)4}4Cl9(THF)6]2 ( 6 ) can be prepared which contains an cluster anion that is built of anellated six membered rings.  相似文献   

8.
《中国化学会会志》2017,64(12):1496-1502
By the four‐component condensation reaction of benzaldehyde with ethyl acetoacetate, malononitrile, and hydrazine hydrate using FeCl2, a pyranopyrazole derivative was synthesized and then reacted with salicylaldehyde to give nano‐Fe‐[phenyl‐salicylaldimine‐methylpyranopyrazole]Cl2 (nano‐[Fe‐PSMP]Cl2). The prepared nano‐Schiff base complex was successfully used as an efficient catalyst for the synthesis of hexahydroquinolines.  相似文献   

9.
Condensation between 4′-aminobenzo-15-crown-5- and 4-antipyrinecarboxaldehyde yielded the functionalized crown ether (L = 1,5-dimethyl-4-[(2,3,5,6,8,9,11,12-octahydro-1,4,7,10,13-benzopentaoxacyclopentadecin-15-ylimino)methyl]-2-phenyl-1,2-dihydro-3H-pyrazol-3-one). A 1:1 (Na+:L) complex has been prepared. The reaction of Fe(II) and Cu(II) salts with L gave complexes of composition [Fe(L)Cl2] and [Cu(L)2Cl2]. Heteronuclear complexes [Fe(L)Cl2Na]ClO4 and [Cu(L)2Cl2Na]ClO4 have also been synthesized from the reactions of [Fe(L)Cl2] and [Cu(L)2Cl2] with NaClO4. The compounds have been characterized by microanalyses and spectroscopic methods.  相似文献   

10.
An experiment was done on electrochemical–calorimetry to identify the Peltier heats of the ferro-ferricyanide reversible electrode reaction over the concentration range of 0.075–0.3 mol dm−3 at 298.15 K. A new approach has been developed to obtain the standard potential of this electrode, which was identified as (+0.3580 ± 0.0030) volt at 298.15 K and compared with previously reported values. An equation derived from the approach is also applied to several standard couples, such as Fe(CN)6−3/Fe(CN)6−4, H+/H2, Cu2+/Cu, Cl/Hg2Cl2,Hg, Fe3+/Fe2+, and Cl/Cl2 to determine their respective reaction heats with satisfying results.  相似文献   

11.
Iron(III) oxyhydroxides were prepared by oxidation of aerated aqueous suspensions of Fe(II) hydroxide. The effects of arsenate species on their formation were studied by mixing FeCl2·4H2O, NaOH and Na2HAsO4 solutions. The intermediate and final products of the oxidation processes were characterised by X-ray diffraction, Infrared and Raman spectroscopy. Arsenate species were not reduced during the process but they influenced both oxidation stages, that is the formation of the intermediate Fe(II–III) compound and its subsequent oxidation into Fe(III) compounds. Arsenate species clearly inhibited the growth and hindered the crystallisation of GR(Cl?), the Fe(II–III) hydroxychloride that would have formed in the experimental conditions considered here. For the largest arsenate concentrations, the intermediate product was nanocrystalline and more likely consisted of clusters showing an ordering of atoms similar to that of GR(Cl?), isolated from each other by adsorbed arsenate species. The adsorption of As(V) prevented growth of these clusters into well-crystallised GR(Cl?). The arsenate species influenced similarly the second reaction stage by inhibiting the formation of well-ordered and crystallised Fe(III) compounds. Lepidocrocite, the final product in the absence of arsenate, was replaced by “6-line” ferrihydrite with increasing As(V) concentration, then “6-line” ferrihydrite was replaced by another poorly ordered compound, feroxyhite. These crystallised compounds were obtained together with an increasing part of nanocrystalline Fe(III) ox(yhydrox)ide(s).  相似文献   

12.
By the condensation reaction of benzaldehyde with ethyl acetoacetate, malononitrile and hydrazine hydrate in the presence of FeCl2, a pyranopyrazole derivative was prepared which was then reacted with salicylaldehyde to afford nano‐Fe‐[phenylsalicylaldiminemethylpyranopyrazole]Cl2 (nano‐[Fe‐PSMP]Cl2). The prepared nano‐Schiff base complex was fully characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, differential thermogravimetry, scanning electron microscopy and UV–visible spectroscopy, and was used as an efficient and catalyst for the preparation of pyranopyrazoles.  相似文献   

13.
In this present work, the synthesis of nanocrystalline α-Al2O3 using pure aluminum (Al) and Fe2O3 (hematite) as the precursors by mechanical alloying technique has been studied. The formation of α-Al2O3 nanocrystallites occurs during the solid-state reaction and through the reduction treatment. Also in this paper, effects of milling time on particle size and the lattice strain nanocrystalline α-Al2O3 have been investigated. Obtained powders were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). The obtained results indicated that a reduction reaction was completed after 2 h milling in a planetary mill. The crystallite size of obtained α-alumina (α-Al2O3) was in general about 12 nm. Finally, the results showed appropriate homogeneity and dispersion of related nanocrystalline.  相似文献   

14.
Abstract

The reaction of tin and germanium tetrachlorides with 3-hydroxy-2-methyl-4H-pyran-4-one (HMa) in benzene yielded M(HMa)4Cl4·C6H6 (M = Sn or Ge) adducts, whereas in methanol the MMa2Cl2 complexes have been isolated. Moreover, tin complexes with the neutral donors 2,6-dimethyl-4H-pyran-4-one (DMP) and 2,6-dimethyl-4H-pyran-4-thione (DMTP), having formulae Sn(L)2Cl2 and Sn(L)2Cl4(L = DMP or DMTP) have been prepared. The compounds have been characterized by ir and proton nmr spectroscopy and by thermogravimetric (TG and DTA) analysis. The thermal behaviour of all complexes has been followed to 1200°C. The stability of the M(HMa)4Cl4 adducts in various solvents is discussed on the basis of proton nmr spectra.  相似文献   

15.
Chlorination reaction behavior of Zircaloy-4 (Zry-4) was simulated by using the HSC code for three different chlorinating reagents of Cl2, HCl, and CCl4. Four major components (Zr, Sn, Fe, and Cr) of Zry-4 and their oxides which were produced during an oxidative decladding process were considered for the theoretical calculation. The simulation results revealed that Cl2 might convert metallic Zr, Sn, Fe, and Cr into their chloride forms, while oxides might not react with Cl2 at 380 °C. When HCl was employed as the chlorinating reagent, it was suggested that metallic Zr, Sn, and Cr might react with HCl while Fe and oxides might not. In the case of CCl4, it was shown that CCl4 could react with all of the metallic and oxide components to produce most amount of ZrCl4 when compared with Cl2 and HCl cases. Reaction behavior of the chlorinating reagents with residual spent nuclear fuel constituents (U3O8, MoO3, Pd, BaO, Y2O3, SrO, Rh2O3, RhO2, La2O3, CeO2, and Nd2O3) was also performed, and it was revealed that Cl2 and HCl might produce (PdCl2, BaCl2, SrCl2, RhCl3, LaCl3, and NdCl3) and (BaCl2, YCl3, SrCl2, RhCl3, LaCl3, and NdCl3), respectively. Although these by-products are produced, it was suggested that highly pure ZrCl4(g) which contains FeCl3(g) and SnCl4(g) as impurities might be recovered when Cl2 or HCl is employed as a chlorinating reagent because other by-products have higher boiling point than the reaction temperature of this study (380 °C). On the other hand, the theoretical calculation results showed that CCl4 might react with all the residual spent fuel constituents to produce additional gaseous impurities of UCl6 and MoCl5 to reduce the purity of ZrCl4 product.  相似文献   

16.
[Fe(dmbipy)Cl4][dmbipyH], 1 (dmbipy is 4,4′-dimethyl-2,2′-bipyridine), was prepared from reaction of FeCl3 · 6H2O with 4,4′-dimethyl-2,2′-bipyridine in 0.1 molar aqueous HCl. Treatment of 1 with dimethyl sulfoxide in methanol produced [Fe(dmbipy)Cl3(DMSO)], 2 (DMSO is dimethyl sulfoxide). Both complexes were characterized by IR, UV-vis, and 1H-NMR spectroscopies and their structures were studied by single crystal diffraction. Compounds 1 and 2 are high-spin with spin multiplicity of six.  相似文献   

17.
《中国化学快报》2022,33(4):2125-2128
The difficulty in Fe(III)/Fe(II) conversion in the Fe(III)/peroxymonosulfate (PMS) process limits its efficiency and application. Herein, l-cysteine (Cys), a green natural organic ligand with reducing capability, was innovatively introduced into Fe(III)/PMS to construct an excellent Cys/Fe(III)/PMS process. The Cys/Fe(III)/PMS process, at room temperature, can degrade a variety of organic contaminants, including dyes, phenolic compounds, and pharmaceuticals. In subsequent experiments with acid orange 7 (AO7), the AO7 degradation efficiency followed pseudo-first-order kinetic which exhibited an initial “fast stage” and a second “slow stage”. The rate constant values ranged depending on the initial Cys, Fe(III), PMS, and AO7 concentrations, reaction temperature, and pH values. In addition, the presence of Cl?, NO3?, and SO42? had negligible impact while HCO3? and humic acid inhibited the degradation of AO7. Furthermore, radical scavenger experiments and methyl phenyl sulfoxide (PMSO) transformation assay indicated that sulfate radical, hydroxyl radical, and ferryl ion (Fe(IV)) were the dominant reactive species involved in the Cys/Fe(III)/PMS process. Finally, based on the results of gas chromatography-mass spectrometry, several AO7 degradation pathways, including N=N cleavage, hydroxylation, and ring opening were proposed. This study provided a new insight to improve the efficiency of Fe(III)/PMS process by accelerating Fe(III)/Fe(II) cycle with Cys.  相似文献   

18.

In an attempt to synthesize the complex [Fe(CN)5(N2)]3- by reaction of Na[Fe(CN)5(NO)]·2H2O with azide followed by treatment with NO[SbCl6], a similar method to that used by Feltham to obtain trans-[RuCl(N2)(das)2]Cl2 from trans-[RuCl(NO)(das)2]Cl2, we found spectroscopic evidence that excess azide reacts with the CN- ligands to generate tetrazolato groups C-coordinated to Fe. Initial results suggest that the obtained compound is sodium azidotris(2H-tetrazolato)(5H-tetrazolato)iron(0). The spectroscopic evidence also indicates that these heterocycles are destroyed by reaction with NO[SbCl6], and the CN- groups are regenerated. Here we present the characterization of these complexes by IR, 13C NMR, conductivity measurements, elemental analysis and magnetic susceptibility.  相似文献   

19.
Mass Spectrometric Measurements of the Stability of the Gaseous Complexes MAl2Cl8 (M ? Be, Fe, Zn, Cd, Pt). Connection between the Stability of the Complexes MAl2Cl8 and the Coordination of M and Cl in the Solid Dichloride The equilibria MCl2,s + Al2Cl6,g ? MAl2Cl8,g mit (M ? Fe, Zn, Cd, Pt) have been measured by mass spectrometry (effusion from double cells). The corresponding equilibrium with BeCl2 has been calculated from older measurements. All the ΔH° and ΔS° data of this type of reaction have been collected from the literature. A clear connection exists between the thermodynamic data and the coordination of M and Cl in the solid dichlorides.  相似文献   

20.
Thermal decomposition of the title compound, Zn(tu)2Cl2 (tu=thiourea), was studied up to 1200°C in dynamic inert (N2) and oxidative (air) atmospheres using simultaneous TG/DTA techniques. In addition, XRD and IR were employed ex situ to resolve the reaction mechanism and products. Cubic ZnS (sphalerite) is formed below 300°C in both atmospheres and is observed until 760°C, whereafter it transforms in nitrogen to the hexagonal ZnS (wurtzite). EGA by FTIR revealed the complexity of the decomposition reactions involving also the evolution of H2NCN, which reacts to form hexagonal ZnCN2 as revealed by an XRD analysis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号