首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of twist linear tetranuclear 3d–4f Co 2 III Ln 2 III [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)] complexes have been prepared under solvothermal conditions and structurally characterized with Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L). The two central Co ions are linked by two alkoxyl oxygen atoms, and one Ln ion lying above and the other below the Co–Co dimer, form a twist linear array. The magnetic susceptibility studies reveal antiferromagnetic or ferromagnetic behaviour, whilst dynamic magnetic studies indicate no slow magnetic relaxation for these complexes.  相似文献   

2.
Rhombohedral hexametavanadates K4Sr(VO3)6, K4Ba(VO3)6, Rb4 Ba(VO3)6, and Cs4Ba(VO3)6 melt incongruently in the temperature range of 491 to 600°C. Cooling of peritectic melts yields mixtures of compounds typical of M2+O-M2+O-V2O5 systems, far from equilibrium and depending on the cooling kinetics. The vanadate Cs4Ba(VO3)6 undergoes reversible polymorphic transformation at 360°C. All compounds show broad-band luminescence with a maximum of the luminescence spectrum at 490–590 nm with three types of excitation. The vanadates K4Sr(VO3)6 and Rb4Ba(VO3)6 show the highest luminescence intensity at room temperature. The latter is also most efficient at liquid nitrogen temperatures. The luminescence spectra depend on the excitation of vanadates. Three hypotheses were put forward to interpret this finding. The nature of luminescence is attributed to the relaxation of electronic excitation in [VO4]3− structural tetrahedra present in the vanadates. The performance characteristics of luminophores were determined. These luminophores may be promising as X-ray luminescent screens, radioluminescence indicators, and light-emitting diode devices.  相似文献   

3.
La2M 3 II Mn4O12 (M = Mg, Ca, Sr, or Ba) manganites have been synthesized by ceramic technology from lanthanum oxide, manganese(III) oxide, and magnesium, calcium, strontium, or barium carbonate. X-ray powder diffraction shows that these compounds crystallize in cubic perovskite space group Pm3m.  相似文献   

4.
Structural, spectral, and thermodynamic characteristics of complex amidoboranes M2[M1(NH2BH3)4] (M1 = Al, Ga; M2 = Li, Na, K, Rb, Cs) were calculated by the B3LYP/def2-SVPD quantum-chemical method. The procedure for the synthesis of these compounds by reactions of alkali metal amidoboranes with aluminum and gallium chlorides was suggested and experimentally tested. Reaction products were characterized by the NMR and IR spectroscopy and X-ray phase analysis.  相似文献   

5.
NdLi3Mg3Mn4O12, NdNa3Mg3Mn4O12, and NdK3Mg3Mn4O12 manganites were synthesized for the first time by solid phase reactions of neodymium(III) and manganese(III) oxides with lithium, sodium, potassium, and magnesium carbonates. X-ray diffraction showed that the compounds crystallized in the tetragonal crystal system. Their unit cell parameters were determined.  相似文献   

6.
Phase transitions and cation mobility in double molybdates K2M 2 II (MoO4)3 with M = Mg or Co and the products of their heterovalent doping with scandium(III) and vanadium(V) have been studied. The transition from low to high conductivity in K2M 2 II (MoO4)3 is the result of a two-stage phase transition, whose occurrence is significantly extended in time. Heterovalent substitutions noticeably decrease the heat of the phase transition. The transition to the low-temperature phase is not achieved even after long-term exposure.  相似文献   

7.
Based on the X-ray diffraction data for polycrystals, the crystal structures of double complex salts [Rh(NH3)5Cl][ReBr6] and [Ir(NH3)5Cl][ReBr6] are refined. The structure of [Rh(NH3)5Cl][IrBr6] is determined. Initial models are constructed using the Monte Carlo method in the straight space. Further refinement is made by the Rietveld method. It is shown that such an approach is suitable for the refinement of crystal structures composed of isolated rigid polyhedra and can be used to determine the structure of salts without structural analogues  相似文献   

8.
The reactions between [Mo33-S)(μ2-S)3(Acac)3(Py)3]PF6 (HAcac is acetylacetone, Py is pyridine) and CuX (X = Cl, I, SCN) afford heterometallic cubane clusters [Mo3(CuX)(μ3-S)4(Acac)3(Py)3]PF6. The structures of two new compounds, [Mo3(CuCl)S4(Acac)3(Py)3]PF6 · 3.25CH2Cl2 · 0.5C6H5CH3 and [Mo3(CuI)S4(Acac)3(Py)3]PF6 · 4C6H6, are determined by X-ray diffraction analysis. All synthesized compounds are characterized by elemental analysis and IR spectra. According to the vibrational spectra, the thiocyanate complex in the solid state is a mixture of the bond isomers [Mo3(CuNCS)S4(Acac)3(Py)3]PF6 and [Mo3(CuSCN)S4(Acac)3(Py)3]PF6, whereas in solution this complex exists as a isothiocyanate form.  相似文献   

9.
Ternary chromites of the composition LaMIMg(CrO3)2 (MI = Li, Na, K) were synthesized for the first time by ceramic technology from stoichiometric amounts of high purity grade La2O3; pure for analysis grade Li2CO3, Na2CO3, K2CO3, and MgCO3; and chemically pure grade Cr2O3. Using X-ray diffractometry, it has been established that compounds are crystallized in cubic and tetragonal crystal systems, and parameters of their crystal lattices have been determined.  相似文献   

10.
Compounds formed in the M2IO-Cr2O3-TiO2. system were synthesized by solid-state reactions. These compounds crystallize in hollandite- and spinel-type structures. The features of themal decomposition of the compounds with the compositions M2ICr2Ti6O16(MI = Na, K, Cs) and LiCrTiO4 were revealed, and their thermal expansion coefficients were determined with the use of high-temperature X-ray diffraction analysis.  相似文献   

11.
Chances for estimating the FeO/Fe2O3tot ratio in rocks by the K and L series of X-ray fluorescence spectra are studied. The errors in the determination of FeO/Fe2O3tot by the intensity ratio of the Kβ2,5/Kβ1,3 and Lβ/Lα1,2 lines are compared. The relative standard deviation of determining FeO using a set of 49 standard samples of eruptive rocks varies in the range 5–16%, depending on the ratio FeO/Fe2O3tot and the concentration of FeO. The better precision is attainable for a ratio above 0.45 at a FeO concentration in the range 5–15%. For samples of andesites and basalts, the relative standard deviation is better than 4%, for rocks of the granite family it is 23% at FeO concentrations below 3%. For samples of metamorphic and sedimentary rocks, the error of FeO determination is higher than that for the eruptive ones. For samples with the ratio FeO/Fe/Fe2O3tot < 0.25, the deviation may exceed 30 rel %. In contrast to chemical analysis, the X-ray fluorescence method appears advantageous in time and cost of sample preparation and can be used for routine analysis in geochemical research.  相似文献   

12.
Summary Proton concentration in SrZr0.95M0.05O3-α (M=Ga, Sc, Y and Nd) was measured with a thermobalance at different temperatures (T=673-973 K) and water vapor pressures (PH2O=0.9-12.8 kPa). At all the pressures and temperatures examined, the amount of proton concentration in these samples is in the order of Sc>Y>Ga>Nd. By an equilibrium evaluation, we estimated the maximum possible proton concentration about 2.0 mol% in these samples. Infrared (IR) absorption spectra are measured in these samples. The absorption bands can be fitted by four (M=Ga, Y, Nd) or three (M=Sc) Gaussian bands.  相似文献   

13.
Measurement of the 3Π-3Π transition of C6H+ in the gas phase near 19486 cm−1 is reported. The experiment was carried out with a supersonic slit-jet expansion discharge using cavity ringdown absorption spectroscopy. Partly resolved P lines and observation of band heads permitted a rotational contour fit. Spectroscopic constants in the ground and excited-state were determined. The density of ions being sampled is merely 2×108 cm−3. Broadening of the spectral lines indicates the excited-state lifetime to be ≈100 ps. The electronic transition of HC6H2+ at 26402 cm−1 assumed to be 1A1-X1A1 in C2v symmetry could not be rotationally resolved.  相似文献   

14.
Synthesis was performed and physicochemical properties were studied for the M4V2O3(SO4)4 complexes, where M = K, Rb, or Cs. Their crystal structures were determined using the set of data from X-ray diffraction and neutron diffraction studies. All compounds crystallize in a triclinic lattice (space group \(P\bar 1\), Z = 2) with the parameters: a = 7.7688(2), 7.8487(1), 8.1234(1) Å; b = 10.4918(3), 10.8750(2), 11.1065(1) Å; c = 11.9783(4), 12.1336(2), and 11.8039(1) Å; α = 76.600(2)°, 77.910(1)°, 79.589(1)°; β = 75.133(2)°, 75.718(1)°, 87.939(1)°; γ = 71.285(2)°, 72.189(1)°, 75.567(1)°; V = 881.78(5), 945.42(3), 1014.34(2) Å3 for K, Rb, Cs, respectively. The structure of M4V2O3(SO4)4 was found to be formed by discrete complex anions V2O3(SO4) 4 4? incorporating two oxygen-bridged vanadium atoms in a distorted octahedral oxygen environment. The sulfate groups are coordinated by the vanadium atoms in the chelating mode with a large scatter of S-O interatomic distances and OSO angles. Every VO6 octahedron has a short terminal vanadium-oxygen bond with a length of about 1.6Å. The V2O3(SO4) 4 4? complex anions in potassium and rubidium compounds differ from that in Cs4V2O3(SO4)4 in the type of symmetry and mutual spatial orientation. The vibrational spectra were presented and interpreted in line with the structural analysis data.  相似文献   

15.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

16.
The sputtering properties of two representative cluster ion beams in secondary ion mass spectrometry (SIMS), C(60)(+) and Au(3)(+), have been directly compared. Organic thin films consisting of trehalose and dipalmitoylphosphatidylcholine (DPPC) are employed as prototypical targets. The strategy is to make direct comparison of the response of a molecular solid to each type of the bombarding cluster by overlapping the two ion beams onto the same area of the sample surface. The ion beams alternately erode the sample while keeping the same projectile for spectral acquisition. The results from these experiments are important to further optimize the use of cluster projectiles for SIMS molecular depth profiling experiments. For example, Au(3)(+) bombardment is found to induce more chemical damage as well as Au implantation when compared with C(60)(+). Moreover, C(60)(+) is found to be able to remove the damage and the implanted Au effectively. Discussions are also presented on strategies of enhancing sensitivity for imaging applications with cluster SIMS.  相似文献   

17.
Compounds M3Sc(BO3)3 (M = Ba, Sr) were prepared by solid-phase reactions and studied by X-ray diffraction (XRD) analysis and IR spectroscopy. The structural type of the compounds was determined and their unit cell parameters were refined.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 1, 2005, pp. 25–27.Original Russian Text Copyright © 2005 by Khamaganova, Khrushcheva.  相似文献   

18.
The compounds AMMgE(PO4)3 (A = Na, K, Rb, Cs; M = Sr, Pb, Ba; E = Ti, Zr) were synthesized by the sol–gel procedure followed by heat treatment and studied by X-ray diffraction, differential thermal and electron microprobe analysis, and IR spectroscopy. The phosphates crystallize in the kosnarite (KZr2(PO4)3, space group \(R\bar 3\)) and langbeinite (K2Mg2(SO4)3, space group P213) structural types. The structure of KPbMgTi(PO4)3 was refined by full-profile analysis (space group P213, Z = 4, a = 9.8540(3) Å, V = 956.83(4) Å3). The structure is formed by a framework of vertex-sharing MgO6 and TiO6 octahedra and PO4 tetrahedra. The K and Pb atoms fully occupy the extra-framework cavities and are coordinated to nine oxygen atoms. A variable-temperature X-ray diffraction study of KPbMgTi(PO4)3 showed that the compound expands isotropically and refer to medium-expansion class (linear thermal expansion coefficients α a = α b = α c = 8 × 10–6°C–1). The number of stretching and bending modes of the PO4 tetrahedron observed in the IR spectra is in agreement with that predicted by the factor group analysis of vibrations for space groups \(R\bar 3\) and P213. A structural transition from the cubic langbeinite to the rhombohedral kosnarite was found for CsSrMgZr(PO4)3. In the morphotropic series of ASrMgZr(PO4)3 (A = Na, K, Rb, Cs) the kosnarite–langbeinite transition occurs upon the Na → K replacement. The effect of the sizes and electronegativities of cations combined in AMMgE(PO4)3 on the change of the structural type was analyzed.  相似文献   

19.
The first inorg/organic hybrid complex incorporating the macrocyclic oxamide, of formula [(NiL)2Cu2(μ-NSC)2(NSC)2] (1), (NiL, H2L = 2, 3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien), have been synthesized and structurally characterized. The crystals crystallize in the triclinic system, space group P-1, for (1) a = 8.319(3) Å, b = 10.434(4) Å, c = 14.166(5) Å, a = 107.030(5)°, β  =  91.257(5)°, γ = 107.623(5)°. The complex involved both bridging N, S-ligand, and oxamide ligand, C–H?S interactions and NCS → Ni weak coordination interactions making the complex superamolecular.  相似文献   

20.
Compounds of the composition MIVWO6 (M = Li, Na) were prepared by solid-phase synthesis at 600°C. The compounds crystallize in the mineral brannerite structure type. The sodium derivative was prepared and identified for the first time. The crystal structures of the compounds were refined by the Rietveld method (space group C2/m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号