首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
A modified version of the self-consistent reaction field (SCRF) method has been accomplished in order to study the solvent effect on the electronic transition energies. The dielectric relaxation properties both of solvent and solute are directly taken into account in the Hartree—Fock equation. The method has been applied to calculate the solvent shifts, both in absorption and in emission, for n, π* transitions of the three diazine isomers. It was found that the continuum model is able to describe experimental findings for aprotic solvents; the discrete plus continuum model is needed to account for the solvent shifts observed in water solution.  相似文献   

2.
The synthesis reaction of trichlorogermyl crylic acid has been studied systematically by using quantum chemistry methods for the first time.Geometries of reactants,transition states,and products have been optimized,respectively at the B3LYP/6-311G(d,p) level.Vibrational frequencies,IR intensities and relative energies for various stationary points have been determined.The reaction pathways are identified by intrinsic reaction coordinate(IRC)calculations.Theoretical analysis provided conclusive evidence that the process is completed through five pathways of addition reaction of double bond,and the transition states are found to be four- membered ring compounds.Solvent effects are taken into account with the PCM model at the same level.This preliminary study shows that the complex formation is favored by the use of polar solvent.  相似文献   

3.
The proton-transfer mechanism in the isolated, mono, dehydrated forms and dimers of 2-pyridone and the effect of hydration or self-assistance on the transition state structures corresponding to proton transfer from the keto form to the enol form have been investigated using B3LYP and BH-LYP hybrid density functional methods at the 6-311++G (2d, 2p) basis set level. The barrier heights for both H2O-assisted and self-assisted reactions are significantly lower than that of the bare tautomerization reaction from 2-pyridone to 2-hydroxypyridine, implying the importance of the superior catalytic effect of H2O and (H2O)2 and the important role of 2-pyridone itself for the intramolecular proton transfer. Long-range solvent effects have also been taken into account by using the continuum model (Onsager model and polarizable continuum model (PCM)) of water. The tautomerization energies and the potential energy barriers are increased both for the water-assisted and for the self-assisted reaction because of the bulk solvent, which imply that the tautomerization of PY becomes less favorable in the polar solvent.  相似文献   

4.
1H and 13C NMR chemical shifts of coumarin derivatives have been determined using first principles approaches with and without accounting for the effects of the solvent and compared to experiment in order to assess their reliability. Good linear relationships are obtained between theory and experiment, which allows correcting the calculated values for systematic errors. This is particularly the case when using the PCM scheme to model the solvent effects because the δ values larger than 150 ppm are more difficult to reproduce. The final accuracy of the method amounts to about 1 ppm for 13C and 0.05 ppm for 1H.  相似文献   

5.
The oxidative contraction of α‐formal ketone to form continuous all carbon chiral centers promoted by H2O2 is widely used in natural product total synthesis. Typically, using this transformation, chiral cyclic ketones are obtained as the major products and ring‐opening products as the minor products. Herein, DFT calculations have been used to investigate the detailed reaction mechanism and chemoselectivity. In addition, with the widely accepted mechanism of H2O2‐promoted transformation, our systematic investigation with various explicit‐solvent‐model calculations for the first time shows that H2O and H2O2 are comparable at catalyzing the rate‐determining step of this reaction, which emphasis the importance of solvent effect in such transformations. It is found that both the less ring‐constrain and a later transition state in an exothermic reaction account for the origin why the reaction favors ring‐contraction pathway rather than ring‐opening one. By a comprehensive analysis for the substituted groups, it has been disclosed that the steric effects of the substituted groups on R2 and R3 contribute to the selectivity with larger steric hindrance favoring the chiral cyclic products. Moreover, the electronic effects on R1 but not R3 affect the selectivity with electron‐donating groups leading to the cyclic products. Based on our calculations, some predictions for higher selectivity have been made.  相似文献   

6.
Nitrosyl cation (NO+) generating reaction HONO + H+ → NO+ + H2O has been theoretically investigated by B3LYP and high‐electron‐correlation QCISD methods with 6‐31G (d,p) basis set. The solvent effects on the geometries, reaction path properties, energies, thermodynamic, and kinetic characters in four solvents (benzene, tetrahydrofuran, acetonitrile, and water) have been calculated using self‐consistent reaction field (SCRF) approach with the polarizable continuum model (PCM). The results show that the activation energy barriers and the relative energies of the products are decreased with increase of the polarities of the solvents, and the reaction is favored in polar solvents thermodynamically and kinetically. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
The effects of including (a) implicit solvent in geometry optimizations, (b) conformationally flexible molecules in test sets, and (c) empirical dispersion D3(BJ) on scaling factors for predicting 1H and 13C NMR chemical shifts were explored. Scaling factors with optimizations performed in the gas phase and with a Polarizable Continuum Model (PCM) solvent model were obtained for 12 organic solvents, including 2,2,2-trifluroethanol and chlorobenzene, for which scaling factors have been developed for the first time. Scaling factors for aromatic solvents were split into primary and secondary scaling factors to account for CH–π effects. Including empirical dispersion D3(BJ) did not lead to significant improvement.  相似文献   

8.
The pathways of H–D exchange between quercetin and solvent taking into account the effects of the medium are considered using quantum chemical calculations and the mechanism of selective H–D exchange reaction at the C(2′) position observed only in the presence of Au complexes is identified. It is shown that only the exchange processes in the A-ring have suffi- ciently low activation barriers. In the acidic and alkaline media, these processes occur at lower energies as compared with the reaction in the neutral system, which qualitatively agrees with the published experimental data. It was shown that the AuI chloride complex with DMSO is able to react with the C–H bond at the C(2′) position by the mechanism of electrophilic substitution under mild conditions.  相似文献   

9.
The effects of pressure and solvent were examined for the inclusion complexation of phenothiazine dyes and trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium (St-4Me) with water-soluble p-sulfonatocalix[8]arene (Calix-S8). Depending on the bulkiness of the guest dyes, external pressures and solvent polarity increase the inclusion equilibrium constants of dyes with Calix-S8. From the pressure dependence of the inclusion equilibria, the reaction volumes for inclusion by Calix-S8 in the alcohol-water mixtures were estimated to be negative values (?19.8 to ?5.29 cm3 mol?1 for the phenothiazine dyes and ?13.1 to ?9.85 cm3 mol?1 for St-4Me). Analysis of the results of the high pressure indicated that the intrinsic volume change related to inclusion into the Calix-S8 cavity plays an important role in the inclusion of Calix-S8, depending on the bulkiness of the guest molecules. Based on 1H NMR measurements, the structures of the inclusion complexes of Calix-S8 with phenothiazine dyes have been established and the differences in the inclusion behaviors of the phenothiazine dyes and St-4Me are discussed.  相似文献   

10.
The bimolecular nucleophilic substitution reaction of CH3CH2Cl + ClO? in aqueous solution was investigated using a multilayered-quantum representation, quantum mechanical and molecular mechanics approach with an explicit water model. Ten configurations along the reaction pathway including reactant complex, transition state and product complex were analyzed in the presence of the aqueous solution. The obtained free energy activation barrier under the CCSD(T)/MM representation is 13.2 kcal/mol, while it is 11.7 kcal/mol under the DFT/MM representation which agrees very well with the DFT calculation, at 11.0 kcal/mol, with a polarizable continuum solvent model. The solvent effects including the solvation free energy contribution and the polarization effect raise the free activation barrier by 9.8 kcal/mol. The rate constant, at 298 K, is 5.27 × 10?17 cm3/molecule/s which is about seven orders of magnitude smaller than that in the gas phase (1.10 × 10?10 cm3/molecule/s). All in all, the aqueous solution plays an essential role in shaping the reaction pathway for this reaction in water.  相似文献   

11.
The kinetics and mechanism of the reaction of Ni(II) with heptane-,5-dione (Hhptd) have been investigated in concentrated sodium perchlorate aqueous solutions at 298 K. The kinetic data in the different media are consistent with a mechanism in which Ni(II) reacts with the enol form of the ligand. The observed positive salt effect on the rate of the reaction of formation of the complex Nihptd+ is rationalized taking into account the increase of the rate of water exchange from the first solvation sphere of the metal ion to the bulk solvent when increasing salt concentration.  相似文献   

12.
The parallel density functional program PARA GAUSS has been extended by a tool for computing solvent effects based on the conductor‐like screening model (COSMO). The molecular cavity in the solvent is constructed as a set of overlapping spheres according to the GEPOL algorithm. The cavity tessellation scheme and the resulting set of point charges on the cavity surface comply with the point group symmetry of the solute. Symmetry is exploited to reduce the computational effort of the solvent model. To allow an automatic geometry optimization including solvent effects, care has been taken to avoid discontinuities due to the discretization (weights of tesserae, number of spheres created by GEPOL). In this context, an alternative definition for the grid points representing the tesserae is introduced. In addition to the COSMO model, short‐range solvent effects are taken into account via a force field. We apply the solvent module to all‐electron scalar‐relativistic density functional calculations on uranyl, UO22+, and its aquo complexes in aqueous solution. Solvent effects on the geometry are very small. Based on the model [UO2(H2O)5]2+, the solvation energy of uranyl is estimated to be about ?400 kcal/mol, in agreement with the range of experimental data. The major part of the solvation energy, about ?250 kcal/mol, is due to a donor–acceptor interaction associated with a coordination shell of five water ligands. One can interpret this large solvation energy also as a compounded effect of an effective reduction of the uranyl moiety plus a solvent polarization. The energetic effect of the structure relaxation in the solution is only about 8 kcal/mol. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

13.
《Analytical letters》2012,45(18):3342-3363
Abstract

o-Phenylenediamine has been used as a reagent to quantify nitrites/nitrates in a variety of sample matrices. The method is based on the cyclization reaction between o-phenylenediamine and nitrite in acid medium. The amine undergoes diazotization with nitrite in the presence of acid to form the diazonium ion, which subsequently cyclizes to yield yellowish orange benzotriazole at room temperature with an absorption maximum at 450 nm. The formed dye has been separated, purified, and characterized by IR, NMR, and spectroscopy techniques. The parameters of the reaction between amine and nitrite have been optimized. The effect of interfering ions on the determination of nitrites/nitrates has been described. The developed method has been applied for the determination of residual NO2 gas present in the ambient air after fixing it as a nitrite ion using sodium arsenite as a trapping medium. The dye formed has been extracted into organic solvent to improve the detection limit during the measurement of low levels of ambient NO2 in air. The method obeyed Beer's law in the concentration range 0–250 µg in aqueous medium and 0–50 µg in organic medium with molar absorptivity of 4.09 × 104 L mol?1 cm?1 and 4.3 × 104 L mol?1 cm?1 respectively. Nitrate is determined by reducing it to nitrite after passing through the copperized cadmium reductor column. The developed method has been applied to determine nitrite/nitrate levels in water, soil, and biological samples.  相似文献   

14.
Solvent effects on relative stability, electronic and molecular structure of ozonolysis reaction intermediates are analyzed with the help of ab initio MP2/6-31+G** calculations. A continuum model is employed to account for solute–solvent electrostatic interactions. The results show that there are large effects on the structure and relative stability of carbonyl oxide by substantially favoring its zwitterionic character. A complex formed by carbonyl oxide and formaldehyde is shown to be stable in the gas phase and in solution. This complex can be involved in solvent cage reactions leading to secondary ozonides. Thermodynamically, primary ozonide decomposition is favored by the solvent.  相似文献   

15.
The influence of water on the hardness values of a series of neutral and charged molecules has been studied in the framework of density functional theory using the polarizable continuum model to take into account solvent effects. Three working formulas already widely tested in gas-phase have been used and the results compared. Two of the methods employed going from gas phase to solvent phase give values that do not change, while the results of the third method show remarkable changes. To check the reliability of the hardness behavior found, a test based on the hard-soft/acid-base principle and the calculation of the free energy of reaction has been applied using the adopted procedures.  相似文献   

16.
The calculation of 15N NMR chemical shifts of 27 azoles and azines in 10 different solvents each has been carried out at the gauge including atomic orbitals density functional theory level in gas phase and applying the integral equation formalism polarizable continuum model (IEF‐PCM) and supermolecule solvation models to account for solvent effects. In the calculation of 15N NMR, chemical shifts of the nitrogen‐containing heterocycles dissolved in nonpolar and polar aprotic solvents, taking into account solvent effect is sufficient within the IEF‐PCM scheme, whereas for polar protic solvents with large dielectric constants, the use of supermolecule solvation model is recommended. A good agreement between calculated 460 values of 15N NMR chemical shifts and experiment is found with the IEF‐PCM scheme characterized by MAE of 7.1 ppm in the range of more than 300 ppm (about 2%). The best result is achieved with the supermolecule solvation model performing slightly better (MAE 6.5 ppm). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A novel analytical technique termed ultrasonic-assisted drop-to-drop solvent microextraction (USA-DDSME) in a capillary tube was developed to determine trace benzene, toluene, xylene in one drop of a water sample, which was combined with gas chromatography–flame ionization detection (GC–FID). The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, the volume of sample, extraction time and effect of salt concentration were optimized. The best optimum parameters for extraction were achieved with 3 μL of extraction solvent. Chloroform was divided into four equal divisions in 20 μL water sample (without salt addition) in a capillary tube and ultrasonicated for 10 min, centrifugated at 2,500 rpm for 5 min to let the extraction solvent settle at the bottom of the capillary tube, then 1 μL of the separated extraction solvent was injected into the GC–FID for analysis. Linearity of the method was determined by analyzing spiked water samples over a concentration range of 0.1–50 μg mL?1. Correspondingly, the LOD values were 0.01 μg mL?1. All calibration curves were found to have good linearity with correlation coefficients (r 2) > 0.995. The precision (RSD) of the system, measured by six repeated determinations of the analytes at 1 μg mL?1 were in the range of 1.6–3.5%.  相似文献   

18.
A theoretical analysis about the mechanism and kinetics of dimethyl carbonate (DMC) formation via oxidative carbonylation of methanol on Cu2O catalyst is explored using periodic density functional calculations, both in gas phase and in solvent. The effect of solvent is taken into account using the conductor‐like screening model. The calculated results show that CO insertion to methoxide species to produce monomethyl carbonate species is the rate‐determining step, the corresponding activation barrier is 161.9 kJ mol?1. Then, monomethyl carbonate species reacts with additional methoxide to form DMC with an activation barrier of 98.8 kJ mol?1, above reaction pathway mainly contributes to the formation of DMC. CO insertion to dimethoxide species to form DMC is also considered and analyzed, the corresponding activation barrier is 308.5 kJ mol?1, suggesting that CO insertion to dimethoxide species is not competitive in dynamics in comparison with CO insertion to methoxide species. The solvent effects on CO insertion to methoxide species involving the activation barriers suggest that the rate‐determining step can be significantly affected by the solvent, 70.2 kJ mol?1 in methanol and 63.9 kJ mol?1 in water, which means that solvent effect can reduce the activation barrier of CO insertion to methoxide species and make the reaction of CO insertion to methoxide in solvents much easier than that in gas phase. Above calculated results can provide good theoretical guidance for the mechanism and kinetics of DMC formation and suggest that solvent effect can well improve the performance of DMC formation on Cu2O catalyst in a liquid‐phase slurry. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Long‐range β‐ and γ‐relativistic effects of halogens in 15N NMR chemical shifts of 20 halogenated azines (pyridines, pyrimidines, pyrazines, and 1,3,5‐triazines) are shown to be unessential for fluoro‐, chloro‐, and bromo‐derivatives (1–2 ppm in average). However, for iodocontaining compounds, β‐ and γ‐relativistic effects are important contributors to the accuracy of the 15N calculation. Taking into account long‐range relativistic effects slightly improves the agreement of calculation with experiment. Thus, mean average errors (MAE) of 15N NMR chemical shifts of the title compounds calculated at the non‐relativistic and full 4‐component relativistic levels in gas phase are accordingly 7.8 and 5.5 ppm for the range of about 150 ppm. Taking into account solvent effects within the polarizable continuum model scheme marginally improves agreement of computational results with experiment decreasing MAEs from 7.8 to 7.4 ppm and from 5.5 to 5.3 ppm at the non‐relativistic and relativistic levels, respectively. The best result (MAE: 5.3 ppm) is achieved at the 4‐component relativistic level using Keal and Tozer's KT3 functional used in combination with Dyall's relativistic basis set dyall.av3z with taking into account solvent effects within the polarizable continuum solvation model. The long‐range relativistic effects play a major role (of up to dozen of parts per million) in 15N NMR chemical shifts of halogenated nitrogen‐containing heterocycles, which is especially crucial for iodine derivatives. This effect should apparently be taken into account for practical purposes.  相似文献   

20.
This is a gas-phase study of the gauche and trans conformers of 1-bromo-2-iodoethane. The methods used are the second-order Møller-Plesset theory (MP2) and density functional theory (DFT). The functional used for the DFT method is B3LYP and the basis sets used are 6-311++G(d,p) for all atoms except that different basis sets, namely 3-21G, LANECP, CRENBL ECP, Stuttgart RLC ECP and 6-311G(d,p), have been explored for the iodine atom. The results indicate that the trans conformer is preferred. The energy difference between the gauche and trans conformers (ΔE g?t) and related thermodynamic parameters are reported. The ΔE g?t values are 12.50 kJ?mol?1 (B3LYP) and 10.00 kJ?mol?1 (MP2) with the basis sets being 6-311++G(d,p)[C,H,Br]/6-311G(d,p)[I]. The conformers of 1-bromo-2-iodoethane have also been subjected to vibrational analysis. The results from the two theoretical levels are in good agreement but they are not much affected by the basis set of the iodine atom. The study has been extended to explore solvent effects using Self-Consistent Reaction Field methods. The structural parameters of the conformers are little affected by the polarity of the solvent but ΔE g?t decreases and the solvation Gibbs energy increases with increasing polarity of the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号