首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential relations between the measure of topological interatomic bonding—integrals of electron density with respect to internuclear axis over the corresponding quantum theory of atoms in molecules (QTAIM)-defined interatomic surface (IAS)—and interatomic exchange-correlation contributions from the interacting quantum atoms approach are discussed. The quantum chemical computations of 38 equilibrium diatomic systems at different levels of theory (HF, MP2, MP4SDQ, and CCSD) are invoked to support abstract considerations. Parameters of excellent correlations between IAS integrals and interatomic exchange-correlation energy are found by the optimization. The performance of these trends depends on the accuracy of the electronic correlation treatment. The resulting trends are a unique feature of equilibrium states, whereas more complicated dependencies are explored for several systems at non-equilibrium conditions. The relations of established trends with other IAS-based estimations of strength of bonding interactions between topological atoms and issues explored for multiatomic systems are briefly discussed.  相似文献   

2.
Substituent effects are ubiquitous in chemistry and the most fundamental is the inductive effect. In this study, the so-called inductive effect was probed in derivatives of bicyclo[1.1.1]pentane-1-carboxylic acid using the isodesmic reaction energy of the acid-base deprotonation, calculated at the PBE0/6-31++G(d,p) level of theory (used throughout). Although structure, molecular orbitals, and nuclear magnetic shielding parameters are discussed, the main focus of this study is the use of the quantum theory of atoms in molecules to analyze the electron density distribution. It was observed that the effect propagates via the manipulation of atomic dipole moments controlled by that of the substituent. As the dipole moment conforms to the principle of atomic transferability, it is found that the substituent dipole determined in simple systems (e.g., R-H) can be used to describe the effect upon the bicyclo[1.1.1]pentane-1-carboxylic acid system.  相似文献   

3.
All the possible conformations of tautomeric structures (keto and enol) of acetylacetaldehyde (AAD) were fully optimized at HF, B3LYP, and MP2 levels with 6‐31G(d,p) and 6‐311++G(d,p) basis sets to determine the conformational equilibrium. Theoretical results show that two chelated enol forms have extra stability with respect to the other conformers, but identification of global minimum is very difficult. The high level ab initio calculations G2(MP2) and CBS‐QB3) also support the HF conclusion. It seems that the chelated enol forms have equal stability, and the energy gap between them is probably lies in the computational error range. Finally, the analysis of hydrogen bond in these molecules by quantum theory of atoms in molecules (AIM) and natural bond orbital (NBO) methods fairly support the ab initio results. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

4.
This article presents the first systematic study of a series of diatomic positronic species using the recently proposed regional approach: the quantum theory of atoms in positronic molecules (QTAIPM). This survey includes the LiH,e+, NaH,e+, LiF,e+, NaF,e+, BeO,e+, MgO,e+, CN?,e+, and OH?,e+ species as typical examples. The computational algorithm of the whole analysis is communicated and reviewed in detail. The topological analysis of the joint density distribution reveals topological structures similar to those observed for the purely electronic systems; that is, each system decomposes into two quantum atoms. By considering some of the regional properties of these quantum atoms, it is demonstrated that the positron affects them seriously through two different mechanisms: direct and indirect contributions, the latter refers to electronic and geometric relaxations. The computational results clearly reveal the fact that the regional properties of the quantum atoms of positronic molecules are not deducible from their purely electronic counterparts; thus, an independent analysis is required for each positronic molecule. The positronic population is considered as a typical regional property showing that the attachment of a positron to a purely electronic system enhances the polarization of the electronic distribution. The concept of regional positron affinities is also introduced and discussed as a nonroutine application of the QTAIPM. The results of this article set the stage for further study on the quantum atoms of polyatomic positronic species. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
6.
The general formalism of an extended quantum theory of atoms in molecules (QTAIM) dealing with the multi-component quantum systems, composed of various types of quantum particles, is disclosed in this contribution. This novel methodology, termed as the multi-component QTAIM (MC-QTAIM), is able to deal with non-adiabatic ab initio wavefunctions extracting atoms in molecules quantifying their properties. It can also be applied to elucidate the AIM structure of exotic species and bound quantum systems consisting of fundamental elementary particles like positrons and muons. The formalism is based on the previously disclosed density combination idea that is extended to derive the multi-component subsystem hypervirial theorem as well as the extended subsystem energy functional. Through the extended subsystem variational procedure, inspired from Schrödinger’s original variational principle, the surface terms containing the flux of the current property densities are derived. Accordingly, the extended Gamma field is introduced during this variational procedure that is used as the basic scalar field in the topological analysis yielding atoms in molecules and their real space boundaries. The Gamma field is central to the MC-QTAIM, replacing the usual one-electron density employed in the orthodox QTAIM and corresponding topological analysis. Through the multi-component hypervirial theorem, various regional theorems are derived which are then used to quantify the mechanical properties of atoms in molecules; these include the force, virial, torque, power, continuity and current theorems. In order to demonstrate the capability of the formalism, isotopically asymmetric hydrogen molecules, HD, HT and DT as well as YX systems (Y = 6Li, 7Li; X = H, D, T) composed of electrons and two different nuclei, all treated equally as quantum waves instead of clamped particles, are analyzed within context of the MC-QTAIM. The resulting computational analysis demonstrates that the MC-QTAIM is able to yield reasonable topological structures similar to those observed previously for diatomic species within context of the orthodox QTAIM. The asymmetrical nature of these species, inherent in their non-Born–Oppenhiemer wavefunctions, manifests itself clearly in the MC-QTAIM analysis yielding two distinguishable atomic basins with different properties. These differences are rationalized generally by the observed electron transfer from one basin to the other. Finally, some possible future theoretical extensions are considered briefly.  相似文献   

7.
A method to compute two-electron integrals over arbitrary regions of space is introduced and particularized to the basins appearing in the quantum theory of atoms in molecules. The procedure generalizes the conventional multipolar approach to account for overlapping densities. We show that the approach is always convergent and computationally efficient, scaling as N(4) in the worst, two-center case. Several numerical results supporting our claims are also presented.  相似文献   

8.
An explicit classification of consistent variational constraints within the context of the “quantum theory of proper open subsystems” as well as the “quantum theory of atoms in molecules” (QTAIM) it presented. It is demonstrated that the general variational procedure is not sensitive enough to discriminate between different mathematically consistent variational conditions. The uniqueness of the regional kinetic energy is employed to derive the net zero‐flux condition and the regions satisfying this condition are named as quantum divided basins. A modified form of the local zero‐flux is proposed in order to define topological atoms within the context of the orthodox QTAIM. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
This contribution deals with the subsystem variational procedure within the context of the quantum theory of atoms in positronic molecules (QTAIPM). Before introducing the subsystem energy functional termed as joint subsystem energy functional, a novel notation and the combination strategy are disclosed in detail by restating the positronic subsystem hypervirial theorem. They are employed in proposing the proper subsystem energy functional, the validity of which is checked by various criteria. The zero flux surfaces of the joint density distribution are used to define the topological atoms in the positronic molecules, and they are incorporated into the subsystem variational procedure as proper real space boundary conditions. The variational procedure finally yields the flux of the joint current property density that also appears in the positronic subsystem hypervirial theorem. At every stage, the corresponding equations for the purely electronic systems within the context of the quantum theory of atoms in molecules (QTAIM) are presented to clearly reveal the analogy between these two formalisms and to emphasize the importance of combining the property density distributions in the QTAIPM. The presented material demonstrates the internal consistency of the whole framework and discloses the fact that the QTAIM must be regarded as a variant of the QTAIPM. Furthermore, this formalism promises an extended QTAIM, which is hoped to resolve the issue of molecular structure beyond the clamp nuclei approximation. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
The foundations of the two-component quantum theory of atoms in molecules (TC-QTAIM) are addressed in this contribution. In this regard, the theory is presented in an axiomatic manner and the main theorems describing regional properties of atoms in molecules are considered in detail. This is an extension of the orthodox quantum theory of atoms in molecules (QTAIM) for dealing with non-adiabatic wavefunctions of usual molecules as well as extracting the regional quantum structure of exotic species from the corresponding wavefunctions. The best examples of the latter are positronic and muonic species. The computational study of a model system consisting of a clamped lithium nucleus, four electrons, and a positively charged quantum particle carrying a unit of positive charge with a variable mass, m = 200–1013 m e, supplements the theoretical argument demonstrating unambiguously that the TC-QTAIM analysis yields reasonable results. It reveals that the contribution of the positively charged particle in the topological analysis and basin properties is non-negligible. Most importantly, it is demonstrated that by increasing the mass of the positive particle, the TC-QTAIM analysis tends toward the QTAIM analysis of the lithium hydride system considered within the clamped nucleus paradigm. This result seems to indicate that the orthodox QTAIM is just the asymptote of the TC-QTAIM, the latter encompasses the former. Thus, one may claim that the TC-QTAIM is a unified framework for the AIM analysis of vast variety of quantum systems.  相似文献   

11.
This investigation uses atomic properties derived from the quantum theory of atoms in molecules formalism to rationalize the infrared intensity of the stretching vibration that arises as a Lewis base (B) is protonated (B‐H mode). Moreover, the interacting quantum atom (IQA) partition is employed to evaluate the energetics of protonation. All calculations are performed at the CCSD/cc‐pVQZ level except by the IQA analysis, which is carried out by means of the B3LYP/cc‐pVQZ//CCSD/cc‐pVQZ treatment. First, an efficiency scale is established for Lewis bases in terms of the electronic charge transfer potential. Next, this study shows that the intensity of the B‐H stretching depends mostly on the electronic charge amount transferred to the proton. Thus, intensity data provide empirical assessment of Lewis base charge transfer efficiency. Finally, the group separation observed during correlation of proton affinities and electronic charge transfer potential is explained by the interaction energy between fragments of the protonated system.  相似文献   

12.
The nature of H‐H interaction between ortho‐hydrogen atoms in planar biphenyl is investigated by two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), and compared with the traditional virial‐based approach of quantum theory of atoms in molecules (QTAIM). In agreement with Bader's hypothesis of H? H bonding, partitioning the atomic energy into intra‐atomic and interatomic terms reveals that there is a net attractive interaction between the ortho‐hydrogens in the planar biphenyl. This falsifies the classical view of steric repulsion between the hydrogens. In addition, in contrast to the traditional QTAIM energy analysis, both FOHI and IQA show that the total atomic energy of the ortho‐hydrogens remains almost constant when they participate in the H‐H interaction. Although, the interatomic part of atomic energy of the hydrogens plays a stabilizing role during the formation of the H? H bond, it is almost compensated by the destabilizing effects of the intra‐atomic parts and consequently, the total energy of the hydrogens remains constant. The trends in the changes of intra‐atomic and interatomic energy terms of ortho‐hydrogens during H? H bond formation are very similar to those observed for the H2 molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
MP2/6-311++G(3pd,3df) calculations were performed on complexes of acetylene and fluoroform acting as the proton donating systems and different Lewis bases being the proton acceptors since these complexes are linked through C-H···Y hydrogen bonds. Quantum Theory of Atoms in Molecules (QTAIM) is applied to explain the nature of these interactions. The characteristics of bond critical points are presented for these complexes. The inter-relations between energetic and geometrical parameters as well as the parameters derived from the Natural Bond Orbital (NBO) theory are analyzed here. Red- and blue-shifted hydrogen bonds are detected for the complexes investigated and the differences between those interactions are analyzed from the QTAIM perspective. It is shown that such differences are in agreement with the Bent rule. The position of the bond critical point of the proton donating bond is connected with the nature of hydrogen bonding, that is, if it is blue- or red-shifted.  相似文献   

14.
《Chemical physics letters》2006,417(1-3):16-21
A simplified derivation of the variational nature of the real space basins used in the quantum theory of atoms in molecules (QTAM) is presented. We focus on pointing out the non-standard characteristics of the variational problem that is solved, and on clarifying some points that tend to be misinterpreted. An explicit discussion of the meaning of the functional minimized is also presented and used to derive both a new form for the atomic virial theorem and to show how basin chemical potentials may be defined.  相似文献   

15.
The generalization to arbitrary molecular geometries of the energetic partitioning provided by the atomic virial theorem of the quantum theory of atoms in molecules (QTAIM) leads to an exact and chemically intuitive energy partitioning scheme, the interacting quantum atoms (IQA) approach, that depends on the availability of second-order reduced density matrices (2-RDMs). This work explores the performance of this approach in particular and of the QTAIM in general with approximate 2-RDMs obtained from the density matrix functional theory (DMFT), which rests on the natural expansion (natural orbitals and their corresponding occupation numbers) of the first-order reduced density matrix (1-RDM). A number of these functionals have been implemented in the promolden code and used to perform QTAIM and IQA analyses on several representative molecules and model chemical reactions. Total energies, covalent intra- and interbasin exchange-correlation interactions, as well as localization and delocalization indices have been determined with these functionals from 1-RDMs obtained at different levels of theory. Results are compared to the values computed from the exact 2-RDMs, whenever possible.  相似文献   

16.
The eigenvectors of the electronic stress tensor have been identified as useful for the prediction of chemical reactivity because they determine the most preferred directions to move the bonds. A new 3–D vector based interpretation of the chemical bond that we refer to as the bond-path framework set B provides a version of the quantum theory of atoms in molecules (QTAIM) beyond the minimum definition for bonding that is particularly suitable for understanding changes in molecular electronic structure that occur during reactions. We demonstrate that the most preferred direction for bond motion using the stress tensor corresponds to the most compressible direction and not to the least compressible direction as previously reported. We show the necessity for a directional approach constructed using the eigenvectors along the entire bond-length and demonstrate the insufficiency of scalar measures for capturing the nature of the stress tensor within the QTAIM partitioning.  相似文献   

17.
18.
Atomic multipoles as defined by current methods generally do not account for forces in molecules that arise from external electrostatic fields. It is pointed out that such forces and the electrostatic potential that the molecule itself generates are both determined by the molecular multipolar tensors. The latter constitute therefore the fundamental molecular constants that determine the molecular electrostatics apart from polarization. In general the multipolar tensors include contributions from the atomic multipoles and their fluxes. In planar molecules, however, the perpendicular charge flux is zero by symmetry. This gives rise to a (previously introduced) formalism that extracts analytical, force-related, atomic multipoles from the molecular multipolar tensors. This formalism is extended in this work to include force-related (FR) atomic quadrupoles and octupoles in planar molecules. The properties of the FR atomic multipoles, including their perpendicular fluxes, are discussed and some formal theoretical and computational advantages that characterize them are indicated. As an example, the electrostatics of OCS, including the molecular electrostatic potential and the forces on the nuclei due to an external point charge, is discussed.  相似文献   

19.
The quantum theory of atoms in molecules (QTAIM) provides a theoretical foundation to determine the properties of functional groups through additive atomic contributions. Many studies have used QTAIM in their analyses with a variety of electronic structure methods, but it is unknown if the properties measured using one model chemistry, the combination of the electronic structure method and basis set, can be compared to those measured by another. Here, we evaluate the sensitivity of QTAIM functional group and bond critical point properties using six functionals and seven basis sets. High-level B2PLYPD3-BJ/aug-cc-pV5Z reference values are provided for 116 functional groups and the property sensitivity with respect to these values are evaluated based on absolute deviations and by assessing linear relationships. Functional group properties, including charges, dipoles, quadrupoles and volumes, were found to be mostly insensitive to choice of computational model chemistry. However, due to structural and topological inconsistencies, the 6-31G(d) basis set is not recommended for use. Bond critical point properties varied with choice of model chemistry, but models incorporating hybrid functionals and triple-ζ basis sets provided values suitable for use in regression studies.  相似文献   

20.
Atomic Fukui indices, which are obtained from the electron density, have been previously shown to be useful in predicting which atoms in a molecule are most likely to suffer nucleophilic, electrophilic, or radicalary attacks. Here, we present a second-order generalization of these indices based on the electron pair density. We show how second-order atomic Fukui indices can be used to analyze the effects of electron loss or gain in several molecules from an electron pair point of view. Further, these indices also highlight which atoms or pairs of atoms are more likely to suffer nucleophilic, electrophilic, or radical attacks. In conclusion, second-order indices can complement first-order ones by affording relevant information on molecular reactivity from an electron pair perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号