首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Reaction pathways of ethylene and carbon monoxide on the singlet and triplet potential energy surfaces (PESs) have been calculated at B3LYP/6-311++G (3df, 3dp), G3B3 and CCSD(T)//B3LYP levels. Reaction mechanisms have been investigated by analysis of various structures. Suggested reaction mechanisms reveal that 3P3(CH2CHCHO) and 3P4(CH3CCHO) are thermodynamically stable adducts with the negative value in Gibbs free energies on the triplet PES. In addition, results show that one intersystem crossing exists between triplet and singlet PESs, which are obtained by scanning of the C–C bond length in 1IN3 and 3IN7 species.  相似文献   

2.
The mechanism and thermodynamic of NH3 + O2 reaction on the singlet and triplet potential energy surfaces (PES), were carried out using the RMP2 and CCSD (T)//RMP2 theoretical approaches in connection with the 6-311++G(d, p) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1 on the singlet and triplet PES were formed between ammonia and molecular oxygen. With variety of pre-reactive complexes, six types of products are obtained, of which two types are found to be thermodynamically stable. The mechanistic properties of all products channels are discussed. Results show that production of HONO + H2 and HN(OH)2 are the main reaction channels in thermodynamic viewpoint with the Gibbs free energy of ? = ?34.681 and ?27.153 kcal/mol, respectively. Rate constants of the title reaction over the temperature range of (200–1000 K) show kinetic products are different from thermodynamic products.  相似文献   

3.
The reaction mechanism of sulfur vapor (S) with nitrite ion (NO2 ) has been investigated theoretically on the triplet and singlet potential energy surfaces (PESs). All stationary points for the title reaction have been optimized at the B3LYP/6-311+G(3df) level. The energetic data have been obtained at the CCSD(T)//B3LYP level employing the 6-311+G(3df) basis set. Five stable collision complexes, 3IN1 (S–ONO), 3IN2 (cyclic SONO), 1IN1 (cis S–ONO), 1IN2 (S–NO2 ), and 1IN3 (trans S–ONO), have been considered on the triplet and singlet PESs through barrier-less and exothermic processes. By starting from these complexes, a simple mechanism has been obtained on the triplet PES while a complex mechanism has been considered on the singlet PES. The calculated results show that there are no favorable paths for the reaction of S with NO2 on the singlet PES. Therefore, the S + NO2 reaction proceeds only on the triplet PES to produce 3SO + 3NO as main products. The results from the comparative study of S + NO2 reaction mechanism with S + O3 (as isoelectronic and isostructure reactions) on the singlet PES show similarities in the overall trend of reaction mechanism and atom connectivity and differences in the stability of intermediates and the energy barriers of transition states.  相似文献   

4.
The reaction of 3C2 (a3Π) radical with O2 (X3Σ) molecule has been studied theoretically using ab initio Quantum Chemistry method. Both singlet and triplet potential energy surfaces (PES) are calculated at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-311+G(d) + ZPE and G3B3 levels of theory. On the singlet PES of the title reaction, it is shown that the most feasible pathway should be the O-atom of O2 attacking the C-atom of the  3C2 molecule first to form the adduct 1 CCOO, followed by the O-shift to give intermediate 2 CC(OO), and then to the major products P1 (2CO). Alternatively, 1 can be directly dissociated to P1 via transition state TS1-P1. The other reaction pathways are less competitive due to thermodynamical or kinetic factors. On the other hand, the pathways on the triplet PES are less competitive than those on the singlet PES in low temperature range, whereas it is not the case in high temperature ranges. On the basis of the analysis of the kinetics of all pathways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the title reaction. The reaction heats of formation calculated are in good agreement with that obtained experimentally.  相似文献   

5.
Density functional theory (DFT) calculations have been used to study the isomerization process in the NC3P system. At the DFT/B3LYP/6-311G(d) level, 28 triplet and 28 singlet minima were obtained on their respective potential energy surfaces. The linear triplet 3NCCCP is the lowest-energy structure among the isomers. On the triplet PES, only linear isomers 3NCCCP, 3CNCCP, 3CCCNP, and 3CCNCP possess great kinetic and thermodynamic stabilities to exist under low-temperature conditions (such as in the dense interstellar clouds). At the same time, one chain-like and four three-membered-ring isomers on the singlet PES have been located with high kinetic and thermodynamic stabilities. Further CCSD(T)/6-311G(2df)//QCISD/6-311G(d), CCSD(T)/cc-pVTZ//DFT/B3LYP/cc-pVTZ, and CASPT2(14,12)/cc-pVQZ//CASSCF(14,12)/cc-p VQZ calculations are performed on the structures, frequencies, and energies of the relevant species. The bonding natures were analyzed and the results were compared with the analogous NC3N and NC2P molecules so as to aid their future experimental or astrophysical detection.  相似文献   

6.
The mechanisms of CH2SH with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PES) at the BMC-CCSD//B3LYP/6-311 + G(d,p) level. The result shows that the title reaction is more favourable on the singlet PES thermodynamically, and it is less competitive on the triplet PES. On the singlet PES, the initial addition of CH2SH with NO2 leads to HSCH2NO2 (IM2) without any transition state, followed by a concerted step involving C–N fission and shift of H atom from S to O giving out CH2S + trans-HONO, which is the major products of the title reaction. With higher barrier height, the minor products are CH2S + HNO2, formed by a similar concerted step from the initial adduct HSCH2ONO (IM1). The direct abstraction route of H atom in SH group abstracted by O atom might be of some importance. It starts from the addition of the reactants to form a weak interaction molecular complex (MC3), subsequently, surmounts a low barrier height leading to another complex (MC2), which gives out CH2S + trans-HONO finally. Other direct hydrogen abstraction channels could be negligible with higher barrier heights and less stable products.  相似文献   

7.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

8.
The potential energy surface (PES) for the CF3CFHO2+HO2 reaction has been theoretically investigated using the DFT [B3LYP/6‐311G(d,p)] and B3LYP/6‐311++G(3df,3pd)//B3LYP/6‐311G(d,p) levels of theory. Both singlet and triplet PESs are investigated. The reaction mechanism on the triplet surface is simple. It is revealed that the formation of CF3CFHOOH+3O2 is the dominant channel on the triplet surface. On the basis of the ab initio data, the total rate constants for the reaction CF3CFHO2+HO2 in the T = 210–500 K range have been computed using conventional transition state theory with Wigner's tunneling correction and have been fitted by a rate constant expression as k = 1.04 ×10?12(cm3 molecule?1 s?1) exp (700.33/T). Calculated transition state rate constants with Wigner's tunneling correction for the reaction CF3CFHO2+HO2 are in good agreement with the available experimental values. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

9.
A detailed investigation has been performed at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311+G(d,p) level for the reaction of NCO with C2H5 by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable on the singlet PES than on the triplet PES. On the singlet PES, the initial addition processes are barrierless and release lots of energy. The dominant channel occurs via the fragmentations of the initial adduct C2H5NCO and C2H5OCN to form C2H4 + HNCO and HOCN, respectively. With higher barrier heights, other products such as CH4 + HNC + CO, CH3CHNH + CO, CH3CH + HNCO, and CH3CN + H2 + CO are less competitive. On the triplet PES, the entrance reactions surpass significant barriers; therefore, it could be negligible at the normal atmospheric condition. However, the most feasible channel on the triplet PES is the direct hydrogen abstraction channel to form CH2CH2 + HNCO. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
The singlet and triplet potential energy surfaces (PES) for the isomerization and dissociation reactions of B4 isomers have been investigated using ab initio methods. Ten B4 isomers have been identified and of these 10 species, 4 have not been reported previously. The singlet rhombic structure 11 is found to be the most stable on the B4 surface, in agreement with the results of previous reports. Several isomerization and dissociation pathways have been found. On the singlet PES, the linear 13b can rearrange to rhombus 11 directly, while 13c rearranges to 11 through two‐step reactions involving a cyclic intermediate. On the triplet PES, the capped triangle structure 32 undergoes ring opening to the linear isomer 33b with a barrier of 34.8 kcal/mol and 44.9 kcal/mol, and the latter undergoes ring closure to the square structure 31 with a barrier of 30.4 kcal/mol and 33.0 kcal/mol at the MP4/6–311+G(3df)//MP2/6–311G(d) and CCSD/aug‐cc‐pVTZ//MP2/6–311G(d) levels of theory, respectively. The direct decomposition of singlet B4 yielding to B3+B is shown to have a large endothermicity of 87.3 kcal/mol (CCSD), and that producing 2B2 to have activation energy of 133.4 kcal/mol (CCSD).  相似文献   

11.
The mechanisms of CH2I with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PESs) by the UB3LYP method. The energetic information is further refined at the UCCSD(T) and UQCISD(T) levels of theory. Our results indicated that the title reaction is more favorable on the singlet PES thermodynamically, and less competitive on the triplet one. On the singlet PES, the title reaction is most likely to be initiated by the carbon-to-oxygen approach forming the adduct IM1 (H2ICONO-trans) without any transition state, which can isomerizes to IM2 (H2ICNO2) and IM3 (H2ICONO-cis), respectively. The most feasible pathway is the 1, 3-I shift with C–I and O–N bonds cleavage along with the N–I bond formation of IM1 lead to the product P1 (CH2O + INO), which can further dissociate to give P3 (CH2O + I + NO). The competitive pathway is 1, 3-H shift associated with O–N bond rupture of IM1 to form P2 (CHIO + HNO). The theoretically obtained major product CH2O and adducts IM1 and IM2 are in good agreement with the kinetic detection in experiment. The similarities and discrepancies between CH2I + NO2 and CH2Br + NO2 reactions are discussed in terms of the electronegativity of halogen atom and the barrier height of the rate-determining process. The present study may be helpful for further experimental investigation of the title reaction.  相似文献   

12.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
The intermediates [Si,O,C,O] of the Si + CO2 reaction have been studied in detail using high level ab iniitio methods. Both singlet and triplet [Si,O,C,O] species are characterized structurally and energetically. On the singlet potential energy surface (PES), the vdw‐OSi–CO isomer and in the triplet PES, the bent‐SiOCO isomer is found to be thermodynamically as well as kinetically most stable species. All possible isomerization transition states (TS) are located on both singlet and triplet potential surfaces. On the triplet surface, the stability of the trans‐OSiCO isomer is comparable with that of the bent‐SiOCO isomer. A non‐planar cis‐SiOCO isomer is located on the triplet PES, which is predicted for the first time. Heats of formation at 0 K (ΔfH°, 0 K) for all singlet and triplet species are computed using G3B3, G3MP2, and CBS‐Q theories. The discrepancy between G3B3 and the other two methods for the heat of formation value for triplet trans‐OSiCO is discussed. The PESs for singlet as well as triplet species with their dissociation asymptotes are explored at the CCSD(T)/6‐311G(d,p)//MP2/6‐311G(d,p) level of theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
The mechanisms for the CH2SH + NO reaction were investigated on both of the singlet and triplet PES at the BMC-CCSD//B3LYP/6-311+G(d,p) level. The results indicate that the singlet PES is much lower than the triplet PES energetically; therefore, the reaction occurs on the singlet PES dominantly. The most favorable channel on the singlet PES takes place by a barrierless addition of N atom to CH2SH radical to form HSCH2NO. Subsequently, the rearrangement of the initial adduct HSCH2NO (IM1) to form another intermediate IM3 via a four-center transition state, followed by the C–O bond fission in IM3 leading to the major product CH2S + HNO. Due to high barriers, other product including HC(N)SH + HO, HON + CH2S, and HNO + CHSH could be negligible. The direct abstraction channel was also determined to yield CH2S + HON. With high barrier (33.3 kcal/mol), it is not competitive with the addition channel, in which all stationary points are lower than reactant energetically. While on the triplet PES, with the lowest barrier height (18.8 kcal/mol), the direct N-abstracted channel to form CH2S + HNO is dominant. However, it is not competitive with the channels on the singlet PES. Our results are in good accordance with experimental conclusions that the reaction proceeds via addition mechanism.  相似文献   

15.
Azomethine derivatives of 4-amino-1,2,4-triazole-3-thiones (H2L) and their metal complexes were obtained. The stabilities of the ligand conformers were calculated using quantum-chemical techniques. Ab initio (B3LYP/LANL2DZ) calculations of the complexes in the lower singlet and triplet states were performed with full geometry optimization. The structures and magnetochemical properties of the chelate complexes obtained were examined over a wide temperature range.  相似文献   

16.
An extensive quantum chemical study of the potential energy surfaces (PES) for the association reaction of NH2 with CN and the subsequent isomerization and dissociation reactions has been carried out using density functional theory (DFT)/B3LYP/6‐311++G(3df,2p) level of theory on both singlet and triplet states. The reaction mechanism on the triplet surface is more complicated than that on the singlet surface. A total of 19 isomers and 46 transition states have been identified and characterized on the triplet PES. Among them, IM2 (IM2a), IM3 (IM3a, IM3b), and IM10 are the lowest‐lying isomers with thermodynamic stability. Twenty available dissociation channels, depending on the different initial isomers, have been identified. On the singlet surface, only 12 isomers and 16 transition states have been found, and among them IM1(S) and IM2(S) are the lowest‐lying isomers. The higher isomerization and dissociation barriers on the singlet surface indicate that the addition and the subsequent reactions of NH2+CN are most likely to occur on the triplet PES because of the lower barriers. A prediction can be made for the possible mechanism explaining the production of H+HNCN. Besides HNCN, other major products are NH+HCN and NH+HNC, which are produced by direct dissociation reactions from triplet IM2 and IM3, respectively. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

17.
At various levels of theory, singlet and triplet potential energy surfaces (PESs) of Si2CO, which has been studied using matrix isolation infrared spectroscopy, are investigated in detail. A total of 30 isomers and 38 interconversion transition states are obtained at the B3LYP/6‐311G(d) level. At the higher CCSD(T)/6‐311+G(2d)//QCISD/6‐311G(2d)+ZPVE level, the global minimum 11 (0.0 kcal/mol) corresponds to a three‐membered ring singlet O‐cCSiSi (1A′). On the singlet PES, the species 12 (0.2 kcal/mol) is a bent SiCSiO structure with a 1A′ electronic state, followed by a three‐membered ring isomer Si‐cCSiO (1A′) 13 (23.1 kcal/mol) and a linear SiCOSi 14 (1Σ+) (38.6 kcal/mol). The isomers 11, 12, 13 , and 14 possess not only high thermodynamic stabilities, but also high kinetic stabilities. On the triplet PES, two isomers 31 (3B2) (18.8 kcal/mol) and 37 (3A″) (23.3 kcal/mol) also have high thermodynamic and kinetic stabilities. The bonding natures of the relevant species are analyzed. The similarities and differences between C3O, C3S, SiC2O, and SiC2S are discussed. The present results are also expected to be useful for understanding the initial growing step of the CO‐doped Si vaporization processes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

18.
The reaction paths of methylenecyclopropane 1 on the potential energy surfaces (PESs) of the lowest triplet (T1) state and the lowest excited singlet (S1) state, as well as that of the ground state (S0), were explored by using the nudged elastic band method at the MRMP2//MCSCF/6‐31++G(d,p) and DFT(B3LYP)/6‐31++G(d,p) levels of theory. After vertical excitation of 1, three transition states on the PES of the lowest triplet state and one transition state on the S1 PES were found along the reaction path to produce a carbene, cyclobutylidene 2. All of these transition states are lower in energy than the S1 state produced by vertical excitation at the S0 energy minimum in 1. Fast transition is predicted to occur from the T1 state or from the S1 state to the S0 state due to strong spin‐orbit coupling or nonadiabatic coupling in the geometrical vicinity of 2. On the MRMP2 S0 PES, the energy barriers of 5.0, 10.3 and 13.5 kcal mol?1 were obtained for C migration reaction (backward reaction), 1,2‐H migration reaction to cyclobutene 3, and 1,3‐H migration reaction to bicyclopropane 4, respectively, started at 2. The introduction of phenyl groups makes the energy barriers smaller due to the π conjugation between the carbene center and phenyl groups.  相似文献   

19.
The comprehensive mechanism survey on the gas‐phase reaction between nickel monoxide and methane for the formation of syngas, formaldehyde, methanol, water, and methyl radical has been investigated on the triplet and singlet state potential energy surfaces at the B3LYP/6‐311++G(3df, 3pd)//B3LYP/6‐311+G(2d, 2p) levels. The computation reveals that the singlet intermediate HNiOCH3 is crucial for the syngas formation, whereas two kinds of important reaction intermediates, CH3NiOH and HNiOCH3, locate on the deep well, while CH3NiOH is more energetically favorable than HNiOCH3 on both the triplet and singlet states. The main products shall be syngas once HNiOCH3 is created on the singlet state, whereas the main products shall be methyl radical if CH3NiOH is formed on both singlet and triplet states. For the formation of syngas, the minimal energy reaction pathway (MERP) is more energetically preferable to start on the lowest excited singlet state other than on the ground triplet state. Among the MERP for the formation of syngas, the rate‐determining step (RDS) is the reaction step for the singlet intermediate HNiOCH3 formation involving an oxidative addition of NiO molecule into the C? H bond of methane, with an energy barrier of 120.3 kJ mol?1. The syngas formation would be more effective under higher temperature and photolysis reaction condition. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

20.
Relative stabilities and singlet–triplet energy differences are calculated for 24 C2NX azacarbenes (where X is H, F, Cl, and Br). Three skeletal arrangements are employed including azacyclopropenylidene, [(imino)methylene]carbene, and cyanocarbene. Halogens appear to alternate the electronic ground states of C2NH azacarbenes, from triplet to singlet states, at MP3/6‐311++G**, B1LYP/6‐311++G**, B3LYP/6‐311++G**, MP2/6‐311++G**, MP4(SDTQ)/6‐311++G**, QCISD(T)/6‐311++G**, CCSD(T)/6‐311++G**, CCSD(T)/cc‐pVTZ, G1, and G2 levels of theory. The aromatic characters of singlet cyclic azacyclopropenylidenes are measured using GIAO–NICS calculations. Linear correlations are found between the B3LYP/6‐311++G** calculated LUMO–HOMO energy gaps (ΔEHOMO ‐ LUMO) of the singlet carbenes versus their corresponding singlet–triplet energy separations (ΔE). Electrophilic characters are found for all singlet azacarbenes in their addition reactions to alkenes with the highest electrophilicity being exhibited for X = F. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:377–388, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20442  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号