首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
To explore the influence of the developing flow in a flat channel on the laminar forced convection heat transfer, the non-linear momentum and the linear energy equation are solved successively by employing the Galerkin-Kantorowich method of variational calculus. Assuming constant fluid properties, negligible axial diffusion and temperature boundary condition of the third kind, semi analytic solution for velocity and temperature is derived. The local Nusselt numbers are tabulated for various values of Biot and Prandtl number.  相似文献   

2.
Hayat  T.  Muhammad  K.  Alsaedi  A. 《应用数学和力学(英文版)》2021,42(12):1787-1798

The melting phenomenon in two-dimensional (2D) flow of fourth-grade material over a stretching surface is explored. The flow is created via a stretching surface. A Darcy-Forchheimer (D-F) porous medium is considered in the flow field. The heat transport is examined with the existence of the Cattaneo-Christov (C-C) heat flux. The fourth-grade material is electrically conducting subject to an applied magnetic field. The governing partial differential equations (PDEs) are reduced into ordinary differential equations (ODEs) by appropriate transformations. The solutions are constructed analytically through the optimal homotopy analysis method (OHAM). The fluid velocity, temperature, and skin friction are examined under the effects of various involved parameters. The fluid velocity increases with higher material parameters and velocity ratio parameter while decreases with higher magnetic parameter, porosity parameter, and Forchheimer number. The fluid temperature is reduced with higher melting parameter while boosts against higher Prandtl number, magnetic parameter, and thermal relaxation parameter. Furthermore, the skin friction coefficient decreases against higher melting and velocity ratio parameters while increases against higher material parameters, thermal relaxation parameter, and Forchheimer number.

  相似文献   

3.
The effects of axisymmetric flow of a Powell-Eyring fluid over an impermeable radially stretching surface are presented. Characteristics of the heat transfer process are analyzed with a more realistic condition named the convective boundary condition. Governing equations for the flow problem are derived by the boundary layer approximations. The modeled highly coupled partial differential system is converted into a system of ordinary differential equations with acceptable similarity transformations. The convergent series solutions for the resulting system are constructed and analyzed. Optimal values are obtained and presented in a numerical form using an optimal homotopy analysis method (OHAM). The rheological characteristics of different parameters of the velocity and temperature profiles are presented graphically. Tabular variations of the skin friction coefficient and the Nusselt number are also calculated. It is observed that the temperature distribution shows opposite behavior for Prandtl and Biot numbers. Furthermore, the rate of heating/cooling is higher for both the Prandtl and Biot numbers.  相似文献   

4.
In this paper we have studied the effects of temperature dependent fluid properties such as density, viscosity and thermal conductivity and variable Prandtl number on unsteady convective heat transfer flow over a porous rotating disk. Using similarity transformations we reduce the governing nonlinear partial differential equations for flow and heat transfer into a system of ordinary differential equations which are then solved numerically by applying Nachtsheim–Swigert shooting iteration technique along with sixth-order Runge–Kutta integration scheme. Comparison with previously published work for steady case of the problem were performed and found to be in very good agreement. The obtained numerical results show that the rate of heat transfer in a fluid of constant properties is higher than in a fluid of variable properties. The results further show that consideration of Prandtl number as constant within the boundary layer for variable fluid properties lead unrealistic results. Therefore, modeling thermal boundary layers with temperature dependent fluid properties Prandtl number must treated as variable inside the boundary layer.  相似文献   

5.
A numerical solution of the thermal entry length problem for circular pipes with constant temperature boundaries and with a prescribed dependence of viscosity on temperature and viscous dissipation of some specified order are presented. The results indicate a significant effect of these factors. The results for both heating and cooling processes are presented and compared with the available analytical results. They are useful in the design of heat exchangers with high Prandtl number fluids as the working media.  相似文献   

6.
Finite time thermodynamic analysis is applied to the contact melting process of phase change material inside a horizontal cylindrical capsule. With the minimum entropy generation in given time as the objective function the quadratic nonlinear ordinary differential equation that the optimal melting process should be satisfied is derived. The dimensionless liquid height, melt liquid film thickness, Nusselt number, melting rate, optimal wall temperature and entropy generation are obtained by the numerical method. The optimal results are discussed and compared with the unoptimizable analytical results under the condition of constant wall temperature. It is found that the heat transfer and thermodynamics performance of the optimal melting process is better than that of the melting with constant wall temperature.  相似文献   

7.
Turbulent heat transfer in circular pipe flow with constant heat flux on the wall is investigated numerically via Large Eddy Simulations for frictional Reynolds number Re τ  = 180 and for Prandtl numbers in the range 0.1 ≤ Pr ≤ 1.0. In our simulations we employ a second-order finite difference scheme, combined with a projection method for the pressure, on a collocated grid in cylindrical coordinates. The predicted statistical properties of the velocity and temperature fields show good agreement with available data from direct numerical simulations. Further, we study the local thermal flow structures for different Prandtl numbers. As expected, our simulations predict that by reducing the Prandtl number, the range of variations in the local heat transfer and the Nusselt number decrease. Moreover, the thermal flow structures smear in the flow and become larger in size with less sharpness, especially in the vicinity of the wall. In order to characterize the local instantaneous heat transfer, probability density functions (PDFs) for the instantaneous Nusselt number are derived for different Prandtl number. Also, it is shown that these PDFs are actually scaled by the square root of the Prandtl number, so that a single PDF can be employed for all Prandtl numbers. The curve fits of the PDFs are presented in two forms of log-normal and skewed Gaussian distributions.  相似文献   

8.
We studied, experimentally, the pattern dynamics and free surface deformation in Bénard–Marangoni convection, in a circular container (aspect ratio = 6). The free surface deformation fields were visualized by interferometry and temperature fields by infrared thermography. We considered the influence of the Marangoni (up to 2,623), Biot and Prandtl numbers. More dynamics are induced by increasing the Biot number and transition to a time-dependent flow has been observed. Conversely, increasing the Prandtl number reduces the dynamics. The deformation increases as a function of the Marangoni number until it reaches asymptotic values, which are functions of the Biot and Prandtl numbers.  相似文献   

9.
Marangoni convection is involved in many technological processes. The substances of industrial interest are often governed by diffusive heat transport and their physical modelling is limited with respect to the Prandtl number Pr. The present paper addresses this deficiency. Studies were made on molten salts having Pr values in an intermediate range well below that of the typically employed organics. Since some of the selected species have a relatively high melting point, a high-temperature facility which allows studying thermocapillary convection at temperatures in excess of 1,000°C was built. The results presented here were obtained in a cylindrical geometry, although the equipment that was built is not restricted to this configuration because of its modular construction. Modelled after some applications, the fluid was heated centrically on top. The bulk was embedded in a large thermostatically controlled reservoir so as to establish the lower ambient reference temperature. A characteristic size of the experimental cell was chosen such that, on the one hand, the dynamic Bond number Bo did not become too high; on the other hand, the liquid had to have a certain depth to allow particle image velocimetry. The complicated balance between body forces and thermocapillary forces in the case of intermediate Bo was found to result in a distinct local separation into a bulk motion governed by natural convection with a recirculating Marangoni flow on top. In contrast to low viscosity organics, the vapour pressure of which increases considerably with decreasing Pr, high values of the Marangoni number can be reached. Comparisons of the topology of Marangoni vortices between molten salts with 2.3 ⩽ Pr ⩽ 6.4 and a silicone oil with Pr typically one order of magnitude higher suggest that the regime of non-negligible heat diffusion is entered.  相似文献   

10.
11.
The steady laminar boundary layer flow and heat transfer from a warm, laminar liquid flow to a melting surface moving parallel to a constant free stream is studied in this paper. The continuity, momentum and energy equations, which are coupled nonlinear partial differential equations are reduced to a set of two nonlinear ordinary differential equations, before being solved numerically using the Runge–Kutta–Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, moving parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. It is found that the problem admits dual solutions.  相似文献   

12.
A method is described for calculating turbulent Prandtl numbers from Mach number and total temperature profiles in supersonic boundary layers. The calculations are based on boundary layer measurements in the Mach number range from 3.5 to 5. The investigations clearly indicate that in addition to accurate profile measurements reliable values of shear stress and heat flux at the wall must exist, in order to be able to calculate the turbulent Prandtl number in the viscous regime of the boundary layer. For flow conditions with and without heat transfer, the derived turbulent Prandtl numbers indicate that the turbulent transport of heat decreases much faster towards the wall than the turbulent transport of momentum. The results of the analysis show that only the unequivocal qualitative result of increasing turbulent Prandtl numbers in the viscous region of the boundary layer, can be expected. The variation of the turbulent Prandtl number can be described successfully using a simple approximation, based on the mixing length concept, and is applied to the calculation of total temperature distribution using the law of the wall for compressible flow.  相似文献   

13.
The criteria for the onset of natural convection in a rotating liquid layer with nonuniform volumetric energy sources from absorbed thermal radiation are determined via linear stability analysis. The linearized perturbation equations are solved by using a numerical technique to obtain the eigenvalues that governs the onset of convection in a microgravity environment. The stability criteria are obtained in terms of the Marangoni number as function of the optical thickness. The influences of the Rayleigh number, Taylor number, Bond number, Crispation number, and Biot number on convection are examined in detail. These parameters provide a relationship between the critical Marangoni number and the Coriolis force, the buoyancy force, the interfacial tension, and the heat transport mechanisms.  相似文献   

14.
 The two-dimensional quasi-steady conduction equation governing conduction controlled rewetting of an infinite tube, with outer surface flooded and the inside surface subjected to a constant heat flux, has been solved by Wiener–Hopf technique. The solution yields the quench front temperature as a function of various model parameters such as Peclet number, Biot number and dimensionless heat flux. Also, the dryout heat flux is obtained by setting the Peclet number equal to zero, which gives the maximum sustainable heat flux to prevent the dryout of the coolant. Received on 6 September 2000 / Published online: 29 November 2001  相似文献   

15.
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas–solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal kθ–τθ equations, in addition to the hydrodynamic k–τ transport, and accounts for the particle–particle and particle–wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.  相似文献   

16.
M. M. Rahman 《Meccanica》2011,46(5):1127-1143
This paper presents heat transfer process in a two-dimensional steady hydromagnetic convective flow of an electrically conducting fluid over a flat plate with partial slip at the surface of the boundary subjected to the convective surface heat flux at the boundary. The analysis accounts for both temperature-dependent viscosity and temperature dependent thermal conductivity. The local similarity equations are derived and solved numerically using the Nachtsheim-Swigert iteration procedure. Results for the dimensionless velocity, temperature and ambient Prandtl number within the boundary layer are displayed graphically delineating the effect of various parameters characterizing the flow. The results show that momentum boundary layer thickness significantly depends on the surface convection parameter, Hartmann number and on the sign of the variable viscosity parameter. The results also show that plate surface temperature is higher when there is no slip at the plate compared to its presence. For both slip and no-slip cases surface temperature of the plate can be controlled by controlling the strength of the applied magnetic field. In modelling the thermal boundary layer flow with variable viscosity and variable thermal conductivity, the Prandtl number must be treated as a variable irrespective of flow conditions whether there is slip or no-slip at the boundary to obtain realistic results.  相似文献   

17.
《力学快报》2022,12(3):100329
Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings. Basically, these materials absorb or release heat energy with the help of their latent heat. Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area. In this theoretical work, an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature. It was found that by increasing the thickness of phase change materials’ layers, due to the melting, more thermal energy is stored. Simultaneously it reduces the penetration of excessive heat into the chamber, so that by increasing the thickness of paraffin materials up to 20 mm, the rate of temperature reduction reaches more than 18%. It was also recognized that increasing the values of constant input heat flux increases buoyancy effects. Increasing the Stefan number from 0.1 to 0.3, increases the temperature by 6%.  相似文献   

18.
 Laminar steady state buoyancy induced flows in a two-dimensional, air filled partial open enclosure with a discrete flush mounted iso-flux heat source on one of its walls is investigated numerically. The transport equations for energy and vorticity are solved with the aid of the ADI finite difference scheme on uniform mesh. Because of the specific application of the present study in the air cooling of electronic equipments, results are obtained only for a Prandtl number of 0.71 with an aspect ratio of 1.0 for a range of Rayleigh numbers, Ra (≤105), heat flux parameter, Q and opening parameter, A 0 using constant properties and Boussinesq approximation by imposing approximate conditions at the opening. Results of flow and temperature patterns, velocity and temperature profiles shows that the outgoing flow is governed by strong characteristics of the cavity condition whereas the incoming flow influenced by outside conditions. It is observed that Rayleigh number considerably affects the flow and thermal fields within the open enclosure when compared with intensity of heat flux and size of the opening. Received on 22 January 2001 / Published online: 29 November 2001  相似文献   

19.
A new model for the heat transfer in turbulent pipe flow is presented based on a modified form of the mixing length theory developed by Cebeci [1] for boundary layer flow problems. The model predicts the velocity and temperature distributions and the Nusselt number for fluids with low, medium and high Prandtl numbers (Pr=.02 to 15) and fits the available experimental data very accurately for values of Reynolds number exceeding 104. Expressions for the eddy conductivity and for the turbulent Prandtl number are presented and shown to be dependent upon the Reynolds number, the Prandtl number, and the distance from the tube wall.  相似文献   

20.
Nitriding is a well known technique to improve properties of materials. The process utilizing laser contains many different processes like heat transport and melting effects, diffusion and convection, which partially determine the synthesized coatings. This review concludes the research on titanium nitride synthesis in reactive ambient and draws conclusions for the general handling of the method. Afterwards, it becomes clear which and why, transport processes limit the coating properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号