首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flow structure and heat transfer of a mist jet with a low mass concentration of droplets (within 1%) impinging onto a flat surface aligned normal to the jet are studied numerically. The mathematical model is based on solving a system of Reynolds-averaged Navier-Stokes equations for a two-phase flow with the kinetic equation of the probability density function for coordinates, velocity, and temperature of particles. Addition of droplets is demonstrated to enhance heat transfer substantially, as compared with an impinging single-phase air jet in the region directly adjacent to the stagnation point of the jet.  相似文献   

2.
 An image-processing method is proposed to obtain the distribution of the removal efficiency of particles on a plate by an air jet. This method can be used to measure particle removal from a flat surface by processing the image of the reflected light from the surface. Factors affecting the particle removal efficiency such as air pressure, distance between the nozzle and the impinging surface and the impinging angle are discussed. Optimal conditions are determined to obtain the most effective particle removal by the air jet. Received: 10 April 2001 / Accepted: 2 August 2001  相似文献   

3.
4.
Effect of particle size on a two-phase turbulent jet   总被引:8,自引:0,他引:8  
The effect of particle size on two-phase turbulent jet flow structure is studied in the present experimental investigation. Polystyrene solid particles of 210, 460, and 780 μm were used. The particles' mass loading ratios ranged from 0 to 3.6. The flow Reynolds number was 2 ‘ 104, which was based on the pipe nozzle diameter and the fluid-phase centerline velocity at the nozzle exit. A two-color laser-Doppler anemometer (LDA), combined with the amplitude discrimination method and the velocity filter method, was employed for measurement. The measurement range of the jet flow was from the initial pipe exit to 90D downstream. Results are presented for the mean velocities of particle and fluid phases, the flow's turbulent intensities and the flow's Reynolds stresses. The energy spectra and the correlation functions of the two-phase jet flow were also obtained by using another one-component He-Ne LDA system.  相似文献   

5.
In this paper the present authors measured the gas-particle two-phase velocity correlation in sudden expansion gas-particle flows with a phase Doppler particle anemometer(PDPA) and simulated the system behavior by using both a Reynolds-averaged Navier-Stokes(RANS) model and a large-eddy simulation(LES).The results of the measurements yield the axial and radial time-averaged velocities as well as the fluctuation velocities of gas and three particle-size groups(30 μ m,50 μ m,and 95 μ m) and the gas-particle velocity correlation for 30 μ m and 50 μ m particles.From the measurements,theoretical analysis,and simulation,it is found that the two-phase velocity correlation of sudden-expansion flows,like that of jet flows,is less than the gas and particle Reynolds stresses.What distinguishes the two-phase velocity correlations of sudden-expansion flow from those of jet and channel flows is the absence of a clear relationship between the two-phase velocity correlation and particle size in sudden-expansion flows.The measurements,theoretical analysis,and numerical simulation all lead to the above-stated conclusions.Quantitatively,the results of the LES are better than those of the RANS model.  相似文献   

6.
Condensation in axisymmetric turbulent air-steam jets is studied theoretically and experimentally under bench experiment conditions in which a hot mist jet is injected from a nozzle into air. On the basis of the physico-mathematical model developed, four problems are considered: homogeneous condensation in the jet at a fairly low ambient air temperature, heterogeneous condensation on particles introduced into the jet at the nozzle outlet, heterogeneous condensation on particles ejected into the jet from the surrounding space, and condensation on ions entering the jet from a corona point on the flow axis. The local characteristics of the dispersed phase (mean particle size, standard deviation of the particle size, particle number and volume concentrations) and its integral characteristics (coefficient of vapor conversion into condensed phase and the optical thickness of the jet in different sections) are determined. The calculation results are compared with experimental data. As an application of the model developed, the characteristics of heterogeneous condensation in the jets of certain modern aircraft engines (IL-96-300, Tu-204, MiG-29, Boeing-707) are found on the assumption that the condensation occurs on particles entering the jet at the nozzle outlet and the particle growth rate in all stages (including the initial stage of particle irrigation) coincides with the growth rate of liquid drops.  相似文献   

7.
The dynamics of particles in multi-phase jets has been widely studied due to its importance for a broad range of practical applications. The present work describes an experimental investigation on an initially non-dilute two-phase jet, aimed at improving the understanding in this field. A two-color PDPA has been employed to measure simultaneously the velocity and size of particles. The measurements are post-processed to check the reliability of the results and to derive information on particle volume flux as an indication of their concentration. Acoustic forcing is applied in order to control coherent structures, which are responsible for mixing and transport phenomena, and also to get phase-locked measurements. Phase-averaged statistics enabled to freeze the jet structure, not visible in the time-averaged data. The results along the jet centerline confirm that drag forces and the spread angle of the jet initially control particle dispersion, very near the nozzle exit (x/D < 4). However, as the vortical structures evolve forming tongue-shaped structures, the total particle volume flux is augmented when these structures connect with the main stream (x/D > 5). This is due to an increase of the number of smaller size particles, even when a decrease of the number of larger size particle is observed. Further analysis at five cross-stream sections across two consecutive vortices confirm that small particles are convected around the coherent structure and then incorporated to the main stream, increasing the particle concentration at the jet core. On the other hand, the number of larger particles (as well as their contribution to axial volume flux) starts to decay in regions of high azymuthal vorticity. This behaviour is partly ascribed to the transversal lift force, associated to the large spatial gradients observed in these regions. Saffman and Magnus forces have been estimated to be comparable or even greater than radial drag forces. The results suggest that the Saffman force might accelerate particles in radial direction, inducing a high radial volumetric flow rate from high to low axial velocity regions.  相似文献   

8.
湍流冲击射流流动与传热的数值研究进展   总被引:15,自引:0,他引:15  
陈庆光  徐忠  张永建 《力学进展》2002,32(1):92-108
湍流冲击射流由于其冲击表面时具有很高的局部传热率和冲击力,被广泛应用于如表面的加热、电子元件的冷却、纸张的干燥和材料的切割等工程应用和工业过程中.由于其流动的复杂性,也常被作为一种理想的测试实例来评价湍流模型的性能.此外,湍升力射流与地面之间的空气动力作用对V/STOL (垂直或短距离起落)飞机的性能具有很大的影响.长期以来,人们从理论分析、实验测量和数值模拟方面对冲击射流进行了广泛而系统的研究,积累了丰富的资料.本文在分析了湍流冲击射流的数值研究现状的基础上,对近年来有关湍流冲击射流流动与传热的数值研究方面的文献有选择地进行了综述,重点评述了不同湍流模型对冲击射流流动与传热的预测能力,讨论了存在的问题并对该领域今后的研究方向进行了展望.   相似文献   

9.
Jet impingement boiling is very efficient in cooling of hot surfaces as a part of the impinging liquid evaporates. Several studies have been carried out to measure and correlate the heat transfer to impinging jets as a function of global parameters such as jet subcooling, jet velocity, nozzle size and distance to the surface, etc. If physically based mechanistic models are to be developed, studies on the fundamentals of two-phase dynamics near the hot surface are required. In the present study the vapor–liquid structures underneath a subcooled (20 K) planar (1 mm × 9 mm) water jet, impinging the heated plate vertically with a velocity of 0.4 m/s, were analyzed by means of a miniaturized optical probe. It has a tip diameter of app. 1.5 μm and is moved toward the plate by a micrometer device. The temperature controlled experimental technique enabled steady-state experiments in all boiling regimes. The optical probe data provides information about the void fraction, the contact frequencies and the distribution of the vapor and liquid contact times as a function of the distance to the surface. The measured contact frequencies range from 40 Hz at the onset of nucleate boiling to nearly 20,000 Hz at the end of the transition boiling regime. Due to condensation in the subcooled jet vapor disappears at a distance to the surface of app. 1.2 mm in nucleate boiling. This vapor layer becomes smaller with increasing wall superheat. In film boiling a vapor film thickness of 8 ± 2 μm was found.  相似文献   

10.
The purpose of the paper is to present a new principle and a new algorithm for the direct numerical simulation of particle interactions within a turbulent flow. This approach has been developed in order to be able to compute agglomeration kernels with a numerical method which can still be applied at reasonable costs for very small colloidal particles. In this paper, classical algorithms are first tested and analyzed. They are shown to yield correct results but to require the use of time steps that are so small that they become intractable for colloidal particles. Their direct applications using large steps with respect to the relaxation time scale of the smallest particles reveal drastic errors that increase with the time step and with decreasing particle diameters. The new principle introduces the notion of continuous relative trajectories between possible collision partners and evaluates the exact probability for this trajectory to reach the minimum distance where two particles actually collide. Based on this new physical point of view and on the use of a probabilistic approach, a novel algorithm has been devised and numerical outcomes confirm that accurate predictions for the collision kernel are obtained independently of the particle diameter and for very large time steps. It is believed that the present ideas open interesting possibilities for the simulation of particle interactions over a whole range of particle behavior, from a ballistic to a diffusive regime, and can be extended to take into account new phenomena. Although present developments arise in the context of a numerical study, the new ideas that are introduced in this paper rely on the use of continuous stochastic bridges and, in that respect, propose a new approach to address physical issues of two-phase flow modeling.  相似文献   

11.
The flow structure of a bubbly impinging jet in the presence of heat transfer between the two-phase flow and the surface is numerically investigated on the basis of the Eulerian approach. The model uses the system of Reynolds-averaged Navier–Stokes equations in the axisymmetric approximation written with account for the inverse effect of the bubbles on the average and fluctuating flow parameters. The influence of the gas volumetric flow rate ratio and the dimensions of the bubbles on the flow structure in a gas-liquid impinging jet is studied, In the presence of gas bubbles the liquid velocity is higher than the corresponding value in the single-phase flow. A considerable, more than twofold, anisotropy between the axial and radial turbulent fluctuations in the gas-liquid impinging jet is shown to exist. An addition of air bubbles leads to a considerable growth in the liquid velocity fluctuations in the two-phase flow (up to 50% compared with the single-fluid liquid impinging jet). An increase in the disperse phase dimensions leads to intensification of turbulence of the liquid.  相似文献   

12.
针对移动粒子半隐式法MPS(Moving Particle Semi-implicit Method)基于粒子数密度来判断自由表面会出现将内部粒子误判为自由表面粒子的问题,提出了一种结合几何法和体积法的自由表面粒子判定方法。通过对溃坝问题进行数值模拟,结果表明,全新的自由表面粒子判定方法对流体平稳运动以及剧烈运动两种工况,都能准确地判断出自由表面粒子,解决了基于粒子数密度判断方法因粒子分布稀疏产生误判的问题。[JP2]这种全新的自由表面粒子判定方法对今后采用MPS方法计算两相流问题时,两种介质在界面处的传热传质计算有重要意义。  相似文献   

13.
Two-dimensional normal impinging jet flowfields, with or without an upper plate, were analysed by employing an implicit bidiagonal numerical method developed by Lavante and Thompkins Jr. The Jones–Launder K–? two-equation turbulent model was employed to study the turbulent effects of the impinging jet flowfield. The upper plate surface pressure, the ground plane pressure and other physical parameters of the momentum flowfield were calculated at various jet exit height and jet inlet Reynolds numbers. These results were compared with those of Beam and Warming's numerical method, Hsiao and Chuang, and others, along with experimental data. The potential core length of the impinging jet without an upper plate is longer than that of the free jet because of the effects of the ground plane, while the potential core length of the impinging jet with an upper plate is shorter than that of the free jet because of the effects of the upper plate. This phenomenon in the present analysis provides a fundamental numerical study of an impinging jet and a basis for further analysis of impinging jet flowfields on a variable angle plate.  相似文献   

14.
A bounded vortex flow consists of an axisymmetric vortex that is confined top and bottom between two plates (the “confinement plate” and “impingement plate”, respectively) and surrounded laterally by a swirling annular slot jet. The bottom of the vortex terminates on the boundary layer along the impingement plate and the top of the vortex is drawn into a suction port positioned at the center of the confinement plate. The circumferential flow within the annular jet is important for supplying circulation to the central wall-normal vortex. This flow field is proposed as a method for mitigation of dust build-up on a surface, where the vortex–jet combination supplements the more traditional vacuum port by enhancing the surface shear stress and related particle transport rate. The paper reports on a computational study of the velocity field and particle transport by a bounded vortex flow. Fluid flow computations are performed using a finite-volume approach for an incompressible fluid and particle transport is simulated using a discrete-element method. Computations are performed for different values of two dimensionless parameters – the ratio of the plate separation distance and the average radial location of the jet inlet (the dimensionless confinement height) and the ratio of flow rate withdrawn at the suction outlet and that injected by the jet (the flow rate ratio). For small values of the flow rate ratio, the impinging jet streamlines pass down to the boundary layer along the bottom surface and then travel up the vortex core. By contrast, for large values of flow rate ratio, the annular jet is quickly entrained into the suction outlet and no wall-normal vortex is formed. Particles are observed to roll along the impingement surface in a direction determined by the fluid shear stress lines. Particles roll outward when they lie beyond a separatrix curve of the surface shear stress lines, where particles within this separatrix curve roll inward, piling up at the center of the flow field. A toroidal vortex ring forms for the small confinement height case with flow rate ratio equal to unity, which yields double separatrix curves in the shear stress lines. The inward rolling particles intermittently lift up due to collision forces and burst away from the impingement surface, eventually to become entrained into the flow out the suction port or resettling back onto the impingement surface.  相似文献   

15.
In this paper, Euler-Lagrange type equations are used to describe the jet flow of a mixture of pulverized-coal and gas, which is an unsteady axisymmetric two-phase flow. By means of the finite-difference method, the coal particle's distribution, velocity and trajectory in the flow field are obtained. The coal particles are represented by a finite number of computational particles. Each particle's diameter is randomly assigned according to a given distribution. The states of the computational particles are different from each other. Turbulence is accounted for in a stochastic model. Explicit time-splitting scheme is used to calculate the strongly coupling interphase term. The numerical results are reasonable. The comparison between the numerical results and the experiment data for the case of the oil droplet injection shows good agreement. This numerical technique can be extended to the calculation of other two-phase flows of dilute particles or a droplet system. Mr. Mei Renwei also participated in the work of this paper.  相似文献   

16.
A numerical calculation is carried out by the finite-difference method based on proposed equations for a turbulent submerged jet containing an admixture of solid particles. The relative longitudinal particle velocity and the influence of particles on the turbulence intensity are taken into account. The calculated results adequately agree with available experimental data. A turbulent two-phase jet is examined in [1] on the basis of the theory for a variable density jet, assuming equal mean velocities for the gas and particles and not considering the influence of particles on the turbulence intensity. Particles are analogously taken into account by a noninertial gas mixture in [2, 3], and a particle Schmidt number of 1.1 is assumed in [4]. A model is proposed in [5] which takes into account the influence of particles on the turbulence intensity of the gas phase. Problems concerning the initial and main sections of a submerged jet were solved in [6] by the integral method on the basis of this model and the assumed equality of the mean velocities of the gas and particles. Turbulent mixing of homogeneous two-phase flows with allowance made for dynamic nonequilibrium of the phases is considered in [7]. However, the neglect of turbulent transfer of particle mass and momentum led to a physically unrealistic solution for the particle concentration in the far field of the mixture. A two-phase jet is considered in the present work on the basis of the theory of a two-velocity continuous medium [8, 9] with allowance made for turbulent transfer of particle mass and momentum. The influence of particles on the turbulence intensity of the gas phase is taken into account with the model of [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 57–63, September–October, 1976.The author acknowledges useful comments and discussion.of the work by G. N. Abramovich and participants of his seminar. The author sincerely thanks I. N. Murzinov for scientific supervision of the work.  相似文献   

17.
This paper reports on a two-phase flow Direct Numerical Simulation (DNS) aimed at analyzing the resuspension of solid particles from a surface hit by a transonic jet inside a low pressure container. Conditions similar to those occurring in a fusion reactor vacuum vessel during a Loss of Vacuum Accident (LOVA) have been considered. Indeed, a deep understanding of the resuspension phenomenon is essential to make those reactors safe and suitable for a large-scale sustainable energy production. The jet Reynolds and Mach numbers are respectively set to 3300 and 1. The Thornton and Ning impact/adhesion model is adopted and improved. An advanced resuspension model, which takes into account the dynamics (rolling and slipping) of particles at the wall, is implemented. The use of this model combined with a DNS represents a great novelty in simulating the particle resuspension process. The particles initially deposited at the wall have constant density, whereas their diameters are drawn according to a log-normal distribution, with parameters obtained from experimental data. It has been found that the flow induced motion of wall deposited particles is highly linked with the instantaneous fluid structures and the resuspension phenomenon predominantly affects particles with the largest diameters. Moreover, the jet-deposit interaction is mostly confined within a circumference around the jet of radius approximately equal to the jet diameter.  相似文献   

18.
The particle dispersion characteristics in a confined swirling flow with a swirl number of approx. 0.5 were studied in detail by performing measurements using phase-Doppler anemometry (PDA) and numerical predictions. A mixture of gas and particles was injected without swirl into the test section, while the swirling airstream was provided through a co-flowing annular inlet. Two cases with different primary jet exit velocities were considered. For these flow conditions, a closed central recirculation bubble was established just downstream of the inlet.

The PDA measurements allowed the correlation between particle size and velocity to be obtained and also the spatial change in the particle size distribution throughout the flow field. For these results, the behaviour of different size classes in the entire particle size spectrum, ranging from about 15 to 80 μm, could be studied, and the response of the particles to the mean flow and the gas turbulence could be characterized. Due to the response characteristics of particles with different diameters to the mean flow and the flow turbulence, a considerable separation of the particles was observed which resulted in a streamwise increase in the particle mean number diameter in the core region of the central recirculation bubble. For the lower particle inlet velocity (i.e. low primary jet exit velocity), this effect is more pronounced, since here the particles have more time to respond to the flow reversal and the swirl velocity component. This also gave a higher mass of recirculating particle material.

The numerical predictions of the gas flow were performed by solving the time-averaged Navier-Stokes equations in connection with the well known kε turbulence model. Although this turbulence model is based on the assumption of isotropic turbulence, the agreement of the calculated mean velocity profiles compared to the measured gas velocities is very good. The gas-phase turbulent kinetic energy, however, is considerably underpredicted in the initial mixing region. The particle dispersion characteristics were calculated by using the Lagrangian approach, where the influence of the particulate phase on the gas flow could be neglected, since only very low mass loadings were considered. The calculated results for the particle mean velocity and the mass flux are also in good agreement with the experiments. Furthermore, the change in the particle mean diameter throughout the flow field was predicted approximately, which shows that the applied simple stochastic dispersion model also gives good results for such very complex flows. The variation of the gas and particle velocity in the primary inlet had a considerable impact on the particle dispersion behaviour in the swirling flow and the particle residence time in the central recirculation bubble, which could be determined from the numerical calculations. For the lower particle inlet velocity, the maximum particle size-dependence residence time within the recirculation region was considerably shifted towards larger particles.  相似文献   


19.
The results of a numerical analysis of a supersonic underexpanded jet impinging on an inclined flat plate are presented. The effects of the angle between the plate and the jet symmetry axis, the distance from the nozzle exit section, the exit Mach number, and the off-design conditions on the distribution of the gasdynamic parameters in the jet flowfield and on the plate surface are demonstrated. Specific features of the compressed layer and obstacle surface flows are revealed. The three-dimensional flow is simulated using the large particle method on the basis of the nonstationary Euler equations written in the cylindrical coordinate system. The calculated results are compared with experimental data. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 31–35, January–February, 1997.  相似文献   

20.
The presence of a second phase in a gas jet flowing out of a nozzle leads to considerable changes in the flow pattern [1–3]. Thus, as the particle concentration increases, the central jump in compression [shock wave] moves in the direction of the nozzle cutoff, while the Mach number on the axis of the jet in front of the forward jump diminishes. In this paper we shall consider the numerical solution of the problem of an axisymmetrical, two-phase, underexpanded jet flowing out of a straight nozzle into a submerged space. It is assumed that the distribution of the flow parameters is uniform over the jet cross section and that no thermal or dynamic retardation of the particles occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号