首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The triplet potential energy surface of the O(3P) + CH3CFCH2 reaction has been investigated at the BMC-CCSD//MP2/6-311++G(d,p) level. Multichannel RRKM theory and transition state theory are employed to calculate the rate constants over a wide range of temperatures and pressures. The total rate constants show positive temperature dependence and pressure independence. At pressure of 10 Torr with He as bath gas, the addition/elimination on triplet potential energy surface is a dominant pathway. Major predicted end products are CH3CFCHO (I) and H at the temperatures between 200 and 3,000 K; the direct hydrogen abstraction leading to OH + CH2CFCH2(I) plays an important role at higher temperatures. The calculated overall rate constants are in good agreement with the available experimental data.  相似文献   

2.
Full-dimensional time-dependent wave packet calculations were made to study the \(\hbox{OH}+\hbox{CO} \rightarrow \hbox{H}+\hbox{CO}_2\) reaction on the Lakin–Troya–Schatz–Harding potential energy surface. Because of the presence of deep wells supporting long-lived collision complex, one needs to propagate the wave packet up to 450,000 a.u. of time to fully converge the total reaction probabilities. Our calculation revealed that the CO bond was substantially excited vibrationally in the complex wells, making it necessary to include sufficient CO vibration basis functions to yield quantitatively accurate results for the reaction. We calculated the total reaction probabilities from the ground initial state and two vibrationally excited states for the total angular momentum J = 0. The total reaction probability for the ground initial state is quite small in magnitude with many narrow and overlapping resonances due to the small complex-formation reaction probability and small probability for complex decaying into product channel. Initial OH vibrational excitation considerably enhances the reactivity because it enhances the probability for complex decaying into product channel, while initial CO excitation has little effects on the reactivity. We also calculated the reaction probabilities for a number of J > 0 states by using the centrifugal sudden approximation. By doing some calculations with multiple K-blocks included, we found that the centrifugal sudden approximation can be employed to calculate the rate constant for the reaction rather accurately. The calculated rate constants only agree with experimental measurements qualitatively, suggesting more theoretical studies be carried out for this prototypical complex-formation four-atom reaction.  相似文献   

3.
A detailed theoretical study is carried out at the B3LYP/6-311G(d,p) and CCSD(T)/6-311++G(3df,2pd) (single-point) levels as an attempt to investigate the mechanism of the little understand ion–molecule reaction between HCN+ and NH3. Various possible reaction pathways are considered. It is shown that six dissociation products P 1 (NH3 + + HCN), P 2 (NH4 + + CN), P 3 (NH3 + + HNC), P 9 (HCNH+ + NH2) P 10 (NCNH3 + + H), and P 12 (HNCNH2 + + H) are both thermodynamically and kinetically feasible. Among these products, P 1 is the most competitive product with predominant abundance. P 3 and P 9 may be the second feasible products with comparable yields. P 12 may be the least possible product followed by the almost negligible P 2 and P 10 . Because the isomers and transition states involved in the HCN+ + NH3 reaction all lie below the reactant, the title reaction is expected to be rapid, which is consistent with the measured large rate constant in experiment. The title reaction may have a potential relevance in Titan’s atmosphere, where the temperature is very low. Furthermore, our calculated results are compared with the previous experimental findings.  相似文献   

4.
Quasi-classical trajectory calculations and stochastic one-dimensional chemical master equation simulation methods are used to study the dynamics of the reaction of amidogen radical [NH2(2B1)] with hydroperoxyl radical [HO2(2A″)] on the lowest singlet electronic state. The title complex reaction takes place on a multi-well multichannel potential energy surface consisting of three deep potential wells and one van der Waals complex. In quasi-classical trajectory calculations a new analytical potential energy surface based on CCSD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) ab initio method was driven and used to study the dynamics of the title reaction. In quasi-classical trajectory calculations, the reactive cross sections and reaction probabilities are determined for 200–2000 K relative translational energies to calculate the rate constants. The same ab initio method was used to have the necessary data for solving the one-dimensional chemical master equation to calculate the rate constants of different channels. In solving the master equation, the Lennard-Jones potential model was used to form the collision between the collider gases. The fractional populations of different intermediates and products in the early stages of the reaction were examined to determine the role of the energized intermediates and the van der Waals complex on the dynamics of the title reaction. Although the calculated total rate constants from both methods are in good agreement with the reported experimental values in the literature, the quasi-classical trajectory simulation predicts the formation of NH2O + OH as the major channel in the title reaction in accordance with the previous studies (Sumathi and Peyerimhoff, Chem. Phys. Lett., 263:742–748, 1996), while the stochastic master equation simulation predicts the formation of HNO + H2O as the major products.  相似文献   

5.
The reaction between Fe(III) and dopamine in aqueous solution in the presence of Na2S2O3 was followed through UV–Vis spectroscopy, pH and oxy-reduction potential (Eh) measurements. The formation and quick disappearing of the complex [Fe(III)HL1−]2+, HL1− = monoprotonated dopamine was observed with or without S2O3 2− at pH 3. An unexpected reaction occurs in presence of thiosulfate forming the stable anion complex [Fe(III)(L2−)2]1−, L2− = dopacatecholate (λ = 580 nm) and the auto-increasing of the pH, from 3 to 7. It was proposed that H+ and molecular oxygen are consumed by free radical thiosulfate formed during the reaction.  相似文献   

6.
A sample of 4′-(octyloxy)-4-cyanobiphenyl (8OCB) was studied in the temperature range −60–80°C by wide-line 1H NMR. The line shapes, half-widths, and second moments were determined. For the smectic phase of 8OCB, the relaxation times T 1 and T 2, the correlation time τc, and the degree of order were estimated. The 1H NMR spectral patterns and characteristics were found to be quite different for the crystalline, smectic, and nematic phases of 8OCB, which makes it possible to reliably identify the corresponding transitions and assess the molecular dynamics and molecular order of a structure. The temperature ranges, stability conditions, and other characteristics of the liquid crystalline phases that form on heating 8OCB were determined.  相似文献   

7.
The high-field 19F and 91Zr NMR method is used to study the hydrolysis and polycondensation of hexafluorozirconate ZrF62− in aqueous and water-peroxide solutions. During hydrolysis in aqueous solutions only ZrF62− and F ions were observed by NMR, however, in the water-peroxide medium, an intermediate product of hydrolysis ([F5Zr-OO-ZrF5]4− dimer) was detected. The dimer structure is confirmed by 19F and 91Zr NMR. In high fields (19F NMR frequency > 200 MHz), the fluorine exchange between ZrF62− and F is slow in the 19F NMR scale and has a multisite character.  相似文献   

8.
The radical-molecule reaction of C2Cl3 with NO2 is explored at the B3LYP/6-311G(d,p) and CCSD(T)/6-311+G(d,p) (single-point) levels. On the singlet potential energy surface (PES), the association between C2Cl3 and NO2 is found to be carbon-to-nitrogen attack forming the adduct C2Cl3NO2 (1) without any encounter barrier, followed by isomerization to C2Cl3ONO (2). Starting from 2, the most feasible pathway is the N–O1 bond cleavage which lead to P 1 (C2Cl3O + NO). Much less competitively, 2 transforms to the three-membered ring isomer c-OCCl2C–ClNO (4 a ) which can easily interconvert to c-OCCl2C–ClNO 4 b . Then 4 (4 a , 4 b ) takes direct C1–C2 and C2–O1 bonds cleavage to give P 2 (COCl2 + ClCNO). The lesser competitive channel is the 4 a isomerizes to the four-membered ring intermediate O-c-CNClOCCl2 (5) followed by dissociation to P3 (CO + ClNOCCl2). The concerted 1,2-Cl shift along with C1–O1 bond rupture of 4 b to form ONC(O)CCl3 (6) followed by dissociation to P 4 (ClNO + OCCCl2) is even much less feasible. Moreover, some of P 3 and P 4 can further dissociate to P 5 (ClNO + CO + CCl2). Compared with the singlet pathways, the triplet pathways may have less contribution to the title reaction. Our results are in marked difference from previous theoretical studies which showed that two initial adducts C2Cl3–NO2 and C2Cl3–ONO are obtained. Moreover, in the present paper we focus our main attentions on the cyclic isomers in view of only the chain-like isomers are considered by previous studies. The present study may be helpful for understanding the halogenated vinyl chemistry.  相似文献   

9.
A rapid method for the preparation of 87Y/87mSr radionuclide generator from a rubidium chloride target irradiated with 35 MeV α-particles is described. A simple two-step procedure is used to obtain a carrier-free 87mSr isotope with a high enough radiochemical yield and high purity in the final aqueous fraction.  相似文献   

10.
Type 304 stainless steel specimens artificially contaminated with CsCl solution were treated with KOH solution and KNO3 solution, respectively. Cs+ ion removal tests by a Q-switched Nd:YAG laser at 1064 nm at a given fluence of 57.3 J/cm2 were performed. The surface morphology and the relative atomic mole ratio of the specimen surface were investigated by SEM and EPMA. The order of Cs+ ion removal efficiency of laser was no-treatment < KOH < KNO3 during the 42 shots. From the investigation of XPS peaks around 532.7 and 292.9 eV, KNO3 on a surface of specimen was found to be fully decomposed during the laser irradiation. It was suggested that Cs2O particulates formed by the reaction between the reactive oxygen generated from the nitrate ion and Cs+ ion on the metal surface could be easily suspended. For the KOH system, FeOOH was formed during the laser irradiation and it changed into Fe2O3. It was also suggested that Cs2O particulates were formed by the reaction between the reactive oxygen generated from the decomposition of K2O and Cs+ ion on the metal surface..  相似文献   

11.
The reaction mechanism of Se + O3 on the singlet potential energy has been investigated at CCSD(T)/6-311++G(2df,2pd) level of theory based on the geometric parameters optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The calculated results show that the reactants are firstly associated into the adduct Se–O3 with any intrinsic barrier. Subsequently, through a variety of transformations of isomer Se–O3, two kinds of products P1(SeO3(D3h)) and P2(SeO + 3O2) are obtained. The breakage and formation of the chemical bonds in the reaction have been studied by the topological analysis of electronic density. The topological analysis results show that the ring transitional structure region does not only occur in cis-OSeOO → SeO3(Cs) process but also occur in SeO3(Cs) → SeO3(D3h).  相似文献   

12.
We present density functional theory (DFT) and complete basis set (CBS) calculations of the prototypical radical–radical reaction of ground–state atomic oxygen [O(3P)] with ethyl (C2H5) radicals. The respective reaction mechanisms and dynamics were investigated on the doublet potential energy surfaces using the DFT method and CBS model. In the title reaction, the barrierless addition of O(3P) to C2H5 led to the formation of energy-rich intermediates that underwent subsequent isomerization and decomposition to yield various products. The products predicted to be found were: H2CO + CH3, CH3CHO + H, c–CH2OCH2 + H, 1,3CH3COH + H, 1,3HCOH + CH3, CH2CHOH + H, C2H3 + H2O, and CH2CH2 + OH. In particular, unlike previous kinetic results, proposed to proceed only through the direct H-atom abstraction process, two distinctive pathways to the formation of CH2CH2 + OH were predicted to be in competition: direct, barrierless H-atom abstraction mechanism versus addition process. The competition was consistent with the recent crossed-beam investigations, and their microscopic dynamic characteristics are discussed at the molecular level.  相似文献   

13.
Utilization of (p, 4n) reaction channel for the production of medical radionuclides became very attractive with commercial availability of medium energy cyclotrons. Significantly higher yields and radionuclidic purity may open new perspectives for several novel and some of the radionuclides previously have not been considered due to production difficulties. In present work, we show the proof-of-principle study on the production of 86Y for Positron Emission Tomography imaging via radionuclide generator 86Zr → 86Y. Production suitability of 86Zr from natural yttrium target and radiochemical separation strategies were tested. In addition, two generator systems were proposed and evaluated.  相似文献   

14.
Abstract  The title compound, labeled with 13C in the ethyl groups was synthesized from K13CN and low-molecular-weight components. The synthetic relay compound was 31(32)[13C]-xanthobilirubinic acid methyl ester in a synthetic route that leads to a label in the ethyl β-substituent of a dipyrrinone model for bilirubin. This labeled dipyrrinone was oxidatively coupled to the dimethyl ester of mesobiliverdin-XIIIα, thereby providing a route to a 13C-labeled mesobiliverdin and mesobilirubin, with one carbon of each ethyl being 98% 13C-enriched. Graphical Abstract     相似文献   

15.
The reaction of CH3OCF2CF2OCHO with Cl atom has been investigated theoretically by direct dynamics method. The BB1K hybrid functional in conjunction with the 6-31 + G(d,p) basis set has been used to optimize the geometries for the stationary points and explore the potential energy surface of the reaction. Four rotation conformers (RC1-4) of CH3OCF2CF2OCHO are identified, and they are all considered in the kinetic calculation. For each conformer, there are two kinds of H-abstraction channels and one displacement channel, and the latter one should be negligible due to involving much higher energy barrier than the former two. The individual rate constants for each H-abstraction channel are evaluated by the improved canonical variational transition-state theory with a small-curvature tunneling correction. The overall rate constant is evaluated by the Boltzmann distribution function, and a fitted four-parameter rate constant expression is obtained over a wide temperature range of 200–2,000 K. The agreement between the calculated and available experimental value at 296 K is good. The contribution of each conformer to the title reaction is discussed with respect to the temperature. In addition, because of the lack of available experimental data for the species involved in the reactions, the enthalpies of the formation (ΔH f,298°) for the reactant and its product radicals are predicted via isodesmic reaction at the BB1K/6-31 + G(d,p) level.  相似文献   

16.
Experimentally measured cross-sections are presented for the first time for the 192Os(p,α3n)186Re nuclear reaction up to 67 MeV. Highly enriched thin 192Os targets (15 pcs), prepared by electro-deposition onto Cu backings, were irradiated with an external proton beam delivered by the SSC cyclotron of iThemba LABS. The excitation function curve of the 192Os(p,α3n)186Re reaction shows a maximum cross-section of ~82 mb at about 24 MeV. According to the yield calculations based on the present results, the available cumulative no-carrier-added 186Re yield is 7.76 MBq/μAh (0.21 mCi/μAh) over the energy region 13.4 → 27.3 MeV.  相似文献   

17.
Calculations of the adiabatic potential energy curves and the transition dipole moments between the ground (A1Σ+) and the first excited (A1Σ+) states have been determined for the LiCs and NaCs molecules. The calculations are performed using an ab initio approach based on non-empirical pseudopotentials for Cs+, Li+ and Na+ cores, parameterized l-dependent polarization potentials and full configuration interaction calculations. The potential energy curves and the transition dipole moment are used to estimate the radiative lifetimes of the vibrational levels of the A+Σ+ state using the Franck–Condon (FC) approximation and the approximate sum rule method. The radiative lifetimes associated with the A+Σ+ state are presented here for the first time. These data can help experimentalists to optimize photoassociative formation of ultracold molecules and their longevity in a trap or in an optical lattice.  相似文献   

18.
The adsorption of Cl, Br, and I ions on the renewable liquid In-Ga and Tl-Ga electrodes from 0.1 M solutions in dimethyl formamide (DMF) is investigated by using the method of differential capacitance measurements. The results are compared with similar data obtained on Hg and Ga electrodes in DMF and with the corresponding data obtained in acetonitrile (AN). It is shown that, in DMF, the adsorption parameters and the series of surface activity of halide ions (Hal) significantly depend on the metal nature. In contrast to Hg electrode, on which the surface activity of halide ions increases in the series: Cl < Br < I, on In-Ga, as well as on the Ga electrode, it varies in the reverse order: I < Br < Cl, whereas on the Tl-Ga electrode, partially reversed series of surface activity is observed: Br < I < Cl. The results are explained within the framework of Andersen-Bockris model. An analysis of experimental results leads to the following qualitative conclusions: (1) on the In-Ga and Tl-Ga electrodes, as well as on Ga electrode, free energy of metal-Hal interaction ( $ \Delta G_{_{M - Hal^ - } } $ \Delta G_{_{M - Hal^ - } } ) increases in series I < Br < Cl; (2) for Cl, Br, and I, $ \Delta G_{_{M - Hal^ - } } $ \Delta G_{_{M - Hal^ - } } ) grows in series Tl-Ga < In-Ga < Ga; (3) an absolute magnitude of $ \Delta G_{_{M - Hal_1^ - } } - \Delta G_{_{M - Hal_2^ - } } $ \Delta G_{_{M - Hal_1^ - } } - \Delta G_{_{M - Hal_2^ - } } (Hal1, and Hal2 are any ions of Cl, Br, and I) increases in series Hg < Tl-Ga < In-Ga < Ga; (4) the metal-DMF chemisorption interaction is much stronger than the metal-AN interaction and increases in series Tl-Ga < In-Ga < Ga.  相似文献   

19.
The bimolecular nucleophilic substitution reaction of CH3CH2Cl + ClO? in aqueous solution was investigated using a multilayered-quantum representation, quantum mechanical and molecular mechanics approach with an explicit water model. Ten configurations along the reaction pathway including reactant complex, transition state and product complex were analyzed in the presence of the aqueous solution. The obtained free energy activation barrier under the CCSD(T)/MM representation is 13.2 kcal/mol, while it is 11.7 kcal/mol under the DFT/MM representation which agrees very well with the DFT calculation, at 11.0 kcal/mol, with a polarizable continuum solvent model. The solvent effects including the solvation free energy contribution and the polarization effect raise the free activation barrier by 9.8 kcal/mol. The rate constant, at 298 K, is 5.27 × 10?17 cm3/molecule/s which is about seven orders of magnitude smaller than that in the gas phase (1.10 × 10?10 cm3/molecule/s). All in all, the aqueous solution plays an essential role in shaping the reaction pathway for this reaction in water.  相似文献   

20.
A sample of 4′-(pentyloxy)-4-biphenylcarbonitrile was studied in the temperature range 20–70°C by wide-line 1H NMR. The line shapes, half-widths, and second moments were determined. At 20°C, the spectrum is a broad structureless line, which was split into three components at temperatures above 47°C. This pattern persisted up to 65°C, with the components becoming narrower. Above 68°C, the spectrum rapidly collapses to give a structureless narrow line with a width δH < 0.01 G. Analysis of the spectra and comparison with theoretical calculations made it possible to elucidate the transition of the sample from the crystalline to the nematic and isotropic phases, as well as to determine the temperature range of the stability of the liquid-crystalline phase and the role of rotational mobility of protons of different functional groups and sometimes of these groups as a whole in the mechanisms of phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号