首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical studies are carried out on the multi-channel reactions of SiH(CH3)3 with Cl (reaction 1, R1) and Br atoms (R2) by direct dynamics method. The minimum energy path is calculated at the MP2/6-31+G(d,p) level, and energetic information is further refined by the MC-QCISD (single-point) method. The rate constants for individual reaction channels, R1a, R1b-in, R1b-out, R1c, R1d, R2a, R2b-in, R2b-out, R2c, and R2d, are calculated by the improved canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200–1,500 K. The theoretical three-parameter expressions k 1 (T) = 6.30 × 10−15 T 1.36exp(704.94/T) and k 2 (T) = 9.41 × 10−26 T 4.89exp(−1,033.80/T) cm3 molecule−1 s−1 are given. Our calculations indicate that reaction channels R1c and R2c are the major channel.  相似文献   

2.
The rate constant for the reaction of Br + O3 → BrO + O2 has been measured at four temperatures from 234 to 360 K by the technique of discharge flow coupled with resonance-fluorescence detection of bromine atoms. The measured rate constants obey the Arrhenius expression k = (9.45 ± 2.48) × 10?12 exp(-659 ± 64/T) cm3/molec·sec (one standard deviation). The results are compared with two previous studies, one of which utilized the flash-photolysis–resonance-fluorescence technique and the other utilized the discharge-flow–mass-spectrometric technique. The result is also discussed from a theoretical point of view.  相似文献   

3.
Dimethylsulfoxide (DMSO)–Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×109 M−1 s−1 and 6300 M−1 cm−1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl3 solutions applying a competitive kinetic method using the DMSO–Br complex as the reference system. The obtained rate constants were ∼108 M−1 s−1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO–Br complexes with alcohols were determined to be ∼ 107 M−1 s−1. A comparison of the reactivities of Br atoms and DMSO–Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO–Br complexes.  相似文献   

4.
The multiple-channel reactions Cl + Si(CH3)4 and Br + Si(CH3)4 are investigated by direct dynamics method. The minimum energy path is calculated at the MP2/6-31+G(d,p) level, and energetic information is further refined by the MC-QCISD (single-point) method. The rate constants for individual reaction channel are calculated by the improved canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200–3,000 K. The theoretical three-parameter expression k 1(T) = 9.97 × 10?13 T 0.54exp(613.22/T) and k 2(T) = 1.16 × 10?17 T 2.30exp(?3525.88/T) (in unit of cm3 molecule?1 s?1) are given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smaller barrier height among feasible channels considered.  相似文献   

5.
Theoretical investigations are carried out on the reaction multi-channel CH3COCH3 + Cl (R1) and CH3 COCH3 + CH3 (R2) by means of direct dynamics methods. The minimum energy path (MEP) is obtained at the MP2/6-31 + G(d,p) level, and energetic information is further refined at the BMC–CCSD (single-point) level. The rate constants are calculated by the improved canonical variational transition state theory (ICVT) with the small-curvature tunneling (SCT) correction in a wide temperature range 200–3,000 K. The theoretical overall rate constants are in good agreement with the available experimental data and are found to be k 1 = 3.08 × 10−17 T 2.03exp(−32.96/T) and k 2 = 1.61 × 10−23 T 3.53 exp(−3969.51/T) cm3molecule−1s−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A flow tube method has been used to determine rate constants for the elementary reactions: Oxygen atoms were produced by adding a small excess of NO to a stream of partially dissociated nitrogen, and their reaction with hydrogen halide was monitored by observing the intensity of the NO + O afterglow. Experiments were carried out at temperatures from 293 to 440°K with HCl, and from 267 to 430°K with HBr. The role of secondary reactions was minimised and the residual effects were allowed for. The rate constants for the primary reactions could be matched by Arrhenius expressions: where the units are cm3/molec·sec and the errors correspond to a standard deviation.  相似文献   

7.
Earlier work on the reactions of O(3P) atoms with HCl and HBr has been extended by measuring rate constants for A flow-tube method was used with chemiluminescent monitoring of the removal of atomic oxygen. Rate constants were measured at temperatures between 340 and 489 K for (2a) and 295 and 419 K for (2b); they can be matched by the Arrhenius expressions: where the units are cm3 molecule?1 sec?1 and the errors correspond to a single standard deviation. The results of a quasiclassical trajectory study of collisions of O(3P) with HCl (v = 0,1, and 2) and DCl (v= 0,1, and 2) are also reported. These strengthen the conclusion that, although the rates of reactions (1a) and (2a) are selectively enhanced by vibrationally exciting HCl or DCl, molecules with 0 < v ? 2 are mainly removed in collisions with O(3P) atoms by nonreactive relaxation.  相似文献   

8.
9.
A potential function has been derived for the ground-state surface of HCO which reproduces the spectroscopic properties of the equilibrium molecule and the results of ab-initio calculations at other stationary points on the surface. The potential has been used for a classical trajectory study of the vibrational excitation of CO on collision with fast H atoms and for a study of the reaction of ground-state oxygen atoms and CH radicals.  相似文献   

10.
Rate constants for the gas‐phase reactions of hydroxyl radicals and chlorine atoms with a series of alcohols have been determined by using the relative method. The experiments were performed at 295 ± 2 K and at 1 atmospheric pressure. The obtained values of the rate constants in units of 10?12 cm3 molecule?1 s?1 are as follows:
Alcohol Rate Constants for OH with Rate Constants for Cl with
Propane Cyclohexane Propane Cyclohexane
Ethyl alcohol 3.40 ± 0.25 103 ± 4 96 ± 7
n‐Propyl alcohol 5.47 ± 0.44 153 ± 13 147 ± 11
Isopropyl alcohol 5.31 ± 0.39 73.5 ± 3.7 82.7 ± 7.4
n‐Butyl alcohol 8.66 ± 0.66 211 ± 11 223 ± 10
Isobutyl alcohol 9.08 ± 0.35 9.59 ± 0.45 182 ± 4 196 ± 11
tert‐Butyl alcohol 1.11 ± 0.07 31.5 ± 2.4 34.1 ± 2.5
n‐Pentyl alcohol 12.2 ± 1.0 12.4 ± 0.5 257 ± 25 258 ± 12
Isopentyl alcohol 13.8 ± 0.5 13.2 ± 1.1 237 ± 7 235 ± 9
The above relative rate constants are based on the values (in units of 10?12 cm3 molecule?1 s?1) of k(OH + propane) = 1.08, k(OH + cyclohexane) = 7.22, k(Cl + propane) = 131 and k(Cl + cyclohexane) = 307. The results are compared with previous determinations. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 81–87, 2003  相似文献   

11.
Summary A new method is proposed for the determination of absolute values of the rate constants of elementary reactions of atoms and radicals with molecules in the gas phase.In conclusion the authors express their thanks to N. N. Semenov and V. N. Kondrat'ev for valuable advice.  相似文献   

12.
The hydrogen fluoride infrared chemiluminescence produced by the reactions of fluorine atoms with cyclopropane, cyclopentane, and cyclohexane have been studied. The emission data were used to determine the vibrational energy distributions for the abstraction of hydrogen from the secondary carbon–hydrogen bonds of these small cyclic hydrocarbons. The fraction of reaction exothermicity going into vibrational excitation of hydrogen fluoride was as follows: c-C3H6, 45%; c-C5H10, 53%; c-C6H12, 49%. The slightly lower fraction for the cyclopropane system may indicate that its radical reorganization energy is not completely available for excitation of product HF.  相似文献   

13.
Rate constants have been measured at room temperature for the reactions of Cl atoms with formic acid and with the HOCO radical: Cl + HCOOH → HCl + HOCO (R1) Cl + HOCO → HCl + CO2 (R2) Cl atoms were generated by flash photolysis of Cl2 and the progress of reaction was followed by time‐resolved infrared absorption measurements using tunable diode lasers on the CO2 that was formed either in the pair of reactions ( R1 ) plus ( R2 ), or in reaction ( R1 ) followed by O2 + HOCO → HO2 + CO2 (R3) In a separate series of experiments, conditions were chosen so that the kinetics of CO2 formation were dominated either by the rate of reaction ( R1 ) or by that of reactions ( R1 ) and ( R2 ) combined. The results of our analysis of these experiments yielded: k1 = (1.83 ± 0.12) × 10−13 cm3 molecule−1 s−1 k2 = (4.8 ± 1.0) × 10−11 cm3 molecule−1 s−1 © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 85–91, 2000  相似文献   

14.
15.
The multiple‐channel reactions SiH3 + SiH3CH3 → products and SiH3 + SiH2(CH3)2 → products are investigated by direct dynamics method. The minimum energy path (MEP) is calculated at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD method. The rate constants for individual reaction channels are calculated by the improved canonical variational transition state theory (ICVT) with small‐curvature tunneling (SCT) correction over the temperature range of 200–2400 K. The theoretical three‐parameter expression k1(T) = 2.39 × 10−23T4.01exp(−2768.72/T) and k2(T) = 9.67 × 10−27T4.92exp(−2165.15/T) (in unit of cm3 molecule−1 s−1) are given. Our calculations indicate that hydrogen abstraction channel from SiH group is the major channel because of the smaller barrier height among eight channels considered. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

16.
Laser flash photolysis (at 248 or 308 nm) or aryl iodides in water or water/methanol solutions produces iodine atoms and phenyl radicals. Iodine atoms react rapidly with added I? to form I2? but do not react rapidly with O2 (k ? 107 L mol?1 s?1). Iodine atoms oxidize phenols to phenoxyl radicals, with rate constants that vary from 1.6 × 107 L mol?1 s?1 for phenol to about 6 × 109 L mol?1 s?1 for 4-methoxyphenol and hydroquinone. Ascorbate and a Vitamin E analogue are also oxidized very rapidly. N-Methylindole is oxidized by I atoms to its radical cation with a diffusion-controlled rate constant, 1.9 × 1010 L mol?1 s?1. Iodine atoms also oxidize sulfite and ferrocyanide ions rapidly but do not add to double bonds. The phenyl radicals, produced along with the I atoms, react with O2 to give phenylperoxyl radicals, which react with phenols much more slowly than I atoms. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
18.
The competitive reactions of Br atoms with CH4 and CD4 were studied over the temperature range of 562° to 637°K. Over this temperature interval, the kinetic isotope effect, kH/kD, varied from 3.05 to 2.47 for the reactions The rate constant ratio kH/kD, expressed in Arrhenius form, was found to equal (1.10 ± 0.05) exp (1030 ± 60/RT). A comparison is presented between the experimental result and the result obtained theoretically from absolute rate theory using the London-Eyring-Polanyi-Sato (LEPS) method of constructing the potential energy surface of the reaction. The agreement between theory and experiment is very poor, and this is believed to arise from the highly unsymmetrical nature of the potential energy surface involved in these reactions. A comparison is also presented between the kH/kD values obtained in the Br + CH4–CD4 experiments and the available data on the corresponding Cl + CH4–CD4 reactions.  相似文献   

19.
The nonadiabatic transition state theory proposed recently by Zhao et al. [J. Chem. Phys. 121, 8854 (2004)] is extended to calculate rate constants of complex systems by using the Monte Carlo and umbrella sampling methods. Surface hopping molecular dynamics technique is incorporated to take into account the dynamic recrossing effect. A nontrivial benchmark model of the nonadiabatic reaction in the condensed phase is used for the numerical test. It is found that our semiclassical results agree well with those produced by the rigorous quantum mechanical method. Comparing with available analytical approaches, we find that the simple statistical theory proposed by Straub and Berne [J. Chem. Phys. 87, 6111 (1987)] is applicable for a wide friction region although their formula is obtained using Landau-Zener [Phys. Z. Sowjetunion 2, 46 (1932); Proc. R. Soc. London, Ser. A 137, 696 (1932)] nonadiabatic transition probability along a one-dimensional diffusive coordinate. We also investigate how the nuclear tunneling events affect the dependence of the rate constant on the friction.  相似文献   

20.
Rate constants have been measured for the reaction of OH radicals with four amides, R1N(CH3)—C(O)R2 (R1 = H or Methyl, R2 = Methyl or Ethyl), at 300 and 384 K using flash photolysis/resonance fluorescence. Reactants are introduced under slow flow conditions and are controlled by two independent methods, gas saturation and continuous injection. It turns out that the reactivities of the amides are considerably lower than those of the corresponding amines. The pattern of rate constants obtained at 300 K: 14, 21, 5.2, and 7.6 · 10−12 cm3/s for N,N-Dimethylacetamide (dmaa), N,N-Dimethylpropionamide (dmpa), N-Methylacetamide (maa), and N-Methylpropionamide (mpa), respectively, indicates a single, dominating reaction center and strong electronic effects of the substituents at both sides of the amide function. Correspondingly, the observed negative temperature dependence (E/R = − 400 to − 600 K) excludes a direct abstraction mechanism. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号