首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
The formation of strongly bonded carbonaceous species from simple fuels on platinum metal electrodes at open circuit at potentials in the hydrogen region is widely accepted. Attenuated total reflection (ATR)-IR spectroscopy was used in this work to investigate the adsorption of such particles. A platinum film sufficiently stable for such studies in acid solution could be obtained on a germanium reflection element with a 0.5 nm layer of chromium and a 5 nm layer of platinum. The adsorption of CO leads to a strong band at 2000 cm−1 assigned to linearly bonded CO, a broad band at 1800 cm−1 assigned to bridge-bonded and possibly multiple bonded CO and a weak band at 1430 cm. Clearly, the reaction of methanol, formaldehyde or formic acid produces the strong CO band.  相似文献   

2.
We describe an application of the scanning electrochemical microscope that uses tip–sample feedback to characterize the electro-oxidation of hydrogen on a polycrystalline platinum electrode in sulfuric acid solutions in the presence and absence of adsorbed carbon monoxide. The hydrogen oxidation reaction is probed by reducing protons at a diffusion-limited rate at the microscope's tip electrode while it is positioned near a platinum substrate. A series of approach curves measured as a function of the substrate potential provides hydrogen oxidation rate constant values over a wide range of substrate conditions. In the absence of CO, the rate of hydrogen oxidation exceeds 1 cm s−1 at potentials within the hydrogen adsorption and double layer charging regions. A Tafel slope of 30 mV per decade is determined near the reversible potential. At increasingly positive substrate potentials, the hydrogen oxidation rate decreases exponentially with increasing potential as the surface is covered with an oxide layer. The adsorption of solution-phase carbon monoxide completely deactivates the platinum substrate towards steady-state hydrogen oxidation over a large range of substrate potentials. Approach curves indicate a near-zero rate constant for hydrogen oxidation on CO-covered platinum at potentials below oxide formation. An increase in the hydrogen oxidation rate is seen at potentials sufficiently positive that CO fails to adsorb and the platinum oxide forms. In comparison, dynamic tip–substrate voltammetry depicts a complex substrate response whereby the adsorbed carbon monoxide layer transforms from a weakly adsorbed state at low potentials to a strongly adsorbed state at high potentials. Although steady-state approach curve measurements depict the complete deactivation of catalytic activity at these potentials, a significant hydrogen oxidation current is observed during the potential-induced transformation between these weakly and strongly adsorbed CO states. The rate of hydrogen oxidation approaches that of a pristine platinum surface during this surface transformation before returning to the poisoned state.  相似文献   

3.
Pd architectures such as nanobars and nanoparticles were synthetized by the polyol method using di-ethylene glycol as reaction media. The morphology, composition and electrocatalytic properties were investigated by transmission electronmicroscopy (TEM), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD) and electrochemical measurements. The electrocatalytic activity of Pd nanostructures was tested in terms of formic acid electrooxidation reaction (FAOR) in acid media (0.5 M H2SO4) and compared with commercial Pd/XC-72 (Pd/C). Results from the electrochemical studies showed that Pdnanobars (PdNB/C) presented higher tolerance to the CO and CO2 poisoning effect compared with Pd nanoparticles (PdNP/C) and commercial Pd/C. Furthermore, the onset potential toward formic acid electrooxidation at high concentration (1 M) on PdNB/C exhibited a negative shift ca. 100 mV compared with commercial Pd/C. Finally, PdNB/C in the presence of 1 M FA showed a lower poisoning degree compared with commercial Pd/C and PdNP/C.  相似文献   

4.
Infrared spectra of CO-treated platinum hydrosols subsequently treated with acetylene, hydrogen, and oxygen reveal that v(CO)ads decreases from 2070 cm−1 with increasing gas-treatment time. This has been attributed to a reduction in the coverage of adsorbed CO. In Pt sol/CO/C2H2 systems, v(CO)ads decreases to a limiting value of ca. 2060 cm−1 after exposure to acetylene. In the Pt sol/CO/H2 systems, v(CO)ads decreases to ca. 2050 cm−1 after exposure to hydrogen gas. The lower frequency in the Pt sol/CO/H2 system has been attributed to CO adsorption on more active metal sites formed from the reduction of surface platinum oxides. Exposure of the CO-treated platinum hydrosols to O2 gas was found to cause the eventual disappearance of the v(CO)ads band in infrared spectra, which was attributed to oxidation of adsorbed CO to CO2 by weakly bound surface layers of platinum oxides formed by the oxygen treatment.  相似文献   

5.
Mesoporous metal hosts are attractive electrode materials for complex electrode reactions, for example those involving a system of two immiscible liquids. Here we show that a solution of tetraphenylporphyrianto manganese (MnTPP) in 4-(3-phenylpropyl)-pyridine (PPP) organic liquid can be immobilized into mesoporous platinum thin films electrodeposited from a liquid crystalline template. When immersed in an aqueous solution, the organic liquid remains immobilized inside the mesoporous platinum framework. Well-defined, stable, and reproducible ion transfer voltammograms are recorded. The effects of mesoporous platinum membrane thickness (volume), scan rate, and the type of aqueous electrolyte anion (for Cl, , , CN, SCN and ) are investigated. Mesoporous platinum is proposed as a very effective electrode material for liquidliquid anion sensing and for other applications of electrochemically driven liquidliquid redox systems.  相似文献   

6.
The electrocatalytic activity of a spontaneously tin-modified Pt catalyst, fabricated through a simple dip-coating method under open-circuit conditions and characterized using surface analysis methods, was studied in electrooxidation reactions of a preadsorbed CO monolayer and continuous oxidation of methanol, formic acid, and formaldehyde in the potentiodynamic and potentiostatic modes. The catalytic activity of the tin-modified Pt surface is compared with that of a polycrystalline Pt electrode. Spontaneously Sn-modified Pt catalyst shows a superior activity toward adsorbed CO oxidation and thus can be promising for PEFC applications. The methanol oxidation rate is not enhanced on the Sn-modified Pt surface, compared to the Pt electrode. Formic acid oxidation is enhanced in the low potential region on the Sn-modified surface, compared to the Pt electrode. The formaldehyde oxidation rate is dramatically increased by modifying tin species at the most negative potentials, where anodic formaldehyde oxidation is completely suppressed on the pure Pt electrode. The results are discussed in terms of poisoning CO intermediate formation resulting from dehydrogenation of organic molecules on Pt sites, and oxidation of poisoning adsorbed CO species via the surface reaction with OH adsorbed on neighboring Sn sites.  相似文献   

7.
A comparative investigation of electrocatalytic and adsorption properties of platinum microparticles electrodeposited onto a glassy carbon surface (Pt/GC) and within a thin Nafion® film formed on a GC electrode (Pt/Nf/GC) is described. As test reaction the methanol oxidation in sulfuric acid solutions is used. Dependences of the steady-state specific reaction rates upon potential and methanol concentration were established, as well as those of the platinum surface coverage with methanol chemisorption products upon concentration. It was shown that at higher platinum loadings (above 60 μg cm−2) the specific activities of Pt/GC and Pt/Nf/GC are nearly the same and close to that of smooth platinum. At such loadings the surface coverage of the platinum deposit surface with organic particles does not differ from that of smooth platinum. At very low platinum loadings in the polymeric matrix (10–30 μg cm−2) a considerable decrease in the adsorption of strongly chemisorbed methanol particles is observed. These deposits are characterized by a low specific activity, which may be caused by the decrease of the platinum particle’s size, leading to a decrease in the amount of weakly bound methanol particles participating in the limiting reaction step.  相似文献   

8.
The catalytic activity and durability are crucial for the development of high-performance electrocatalysts. To design electrocatalysts with excellent electroactivity and durability, the structure and composition are two important guiding principles. In this work, novel Pt/Ni(OH)2–NiOOH/Pd multi-walled hollow nanorod arrays (MHNRAs) are successfully synthesized. The unique MHNRAs provide fast transport and short diffusion paths for electroactive species and high utilization rate of catalysts. Because of the special surface and synergistic effects, the Pt/Ni(OH)2–NiOOH/Pd MHNRA electrocatalysts exhibit high catalytic activity, high durability and superior CO poisoning tolerance for the electrooxidation of formic acid in comparison with Pt@Pd MHNRAs, commercial Pt/C, Pd/C and PtRu/C catalysts.  相似文献   

9.
Platinum submonolayer decorated gold nanorods with controlled coverage were prepared by the addition of Au nanorods into the growth solution of Pt in the presence of NH2OH · HCl as the growth agent. The properties of Au nanorods decorated by Pt submonolayer were investigated by various techniques including transimission electron microscopy, X-ray diffraction, and electrochemical methods. The Pt decorated Au nanorods on carbon black showed significantly higher activity on formic acid electrooxidation than the conventional Pt/C catalysts. They showed different reaction path of formic acid electrooxidation by suppressing the formation of poisoning intermediate CO.  相似文献   

10.
In this communication, we study the electrocatalytic formic acid oxidation process on an epitaxially grown Pd monolayer on a Pt(100) single crystal in perchloric acid. The formic acid oxidation activity on this PdMLPt(100) electrode in perchloric acid is significantly enhanced compared to the same electrode in sulfuric acid and compared to unmodified Pt(100), with a low onset potential of around 0.14 VRHE. The absence of hysteresis between the positive and negative scan during formic acid oxidation indicates the remarkable resistance to CO poisoning of the Pd monolayer surface. Most importantly, we report, for the first time, a mass-transport-limited formic acid oxidation rate on the PdMLPt(100) rotating electrode in perchlorate acid, setting a catalytic benchmark for future electrocatalysts for formic acid oxidation.  相似文献   

11.
The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electro-chemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly determined by the surface morphology of platinum. The pretreatment of platinum electrodes can change the surface properties dramatically, in consequence it can improve the electrocatalytic activity towards the electrooxidation of CO. The existence of surface active sites on the roughened platinum electrodes can be used to explain its high electrocatalysis towards the oxidation of CO.  相似文献   

12.
Nanoporous palladium (NPPd) with ultrafine ligament size of 3–6 nm was fabricated by dealloying of an Al–Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m2 g−1), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg−1 for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells.  相似文献   

13.
采用喷雾干燥法和焙烧处理制备中空介孔三氧化钨微球(HMTTS),在其表面进一步负载活性成分Pd,得到纳米Pd/HMTTS复合催化剂. 采用X射线粉末衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等对催化剂的形貌和晶型结构进行了表征. 结果表明,Pd纳米粒子为面心立方晶体结构,均匀地分布在HMTTS表面. 采用循环伏安和计时电流法研究了在酸性溶液中Pd/HMTTS 催化剂对甲酸的电催化氧化性能,结果表明Pd/HMTTS 催化剂比普通的三氧化钨载钯催化剂(Pd/WO3)对甲酸呈现出更高的电催化氧化活性和稳定性.HMTTS独特的中空介孔结构和表面特性以及氢溢流效应有利于甲酸在钯表面的直接脱氢氧化过程的发生.  相似文献   

14.
In this paper, formic acid electrooxidation on ethylidyne modified Pt nanoparticles is reported. The formation as well as the stability electrochemical range of the ethylidyne adlayers was studied by surface enhanced Raman spectroscopy (SERS) and cyclic voltammetry. The presence of adsorbed ethylidyne on platinum nanoparticles improved their electrocatalytic activity towards formic acid oxidation, which could be attributed to an instabilization of the carbon monoxide poisonous species as evidenced by SERS. The use of in situ spectroscopic measurements with electrocatalysts similar to those applied in practice is highlighted.  相似文献   

15.
LinNIU  FengHuaWEI 《中国化学快报》2002,13(11):1119-1120
The electrocatalytic prpertics of platinum microparticles incorporated into poly-(vinylpyridine)(PVP) films ,a conducting polymer with good conductivity and stability,were investigated for hydrogen evolution and formic acid electrooxidation in acidic media,It was found that the catalytic effects depend mainly on the size and amounts of the platinum microparticles dispersed in the polymer layer.  相似文献   

16.
Pre-adsorbed and bulk (continuous) CO oxidation on a polycrystalline Pt electrode were examined in a wall-jet electrochemical quartz crystal nanobalance (EQCN) setup, using both differential and integral evaluation of the EQCN data, to get further insights into the kinetics and mechanism of this important fuel-cell related electrocatalytic reaction. The hydrogen underpotential adsorption–desorption features in the base cyclic voltammogram of a Pt film are accompanied by significant changes in the electrode mass due H-upd induced desorption–adsorption of anion. In the double-layer region small capacitive currents are accompanied by comparatively large reversible mass changes indicating anion adsorption/desorption (96.5 g mol−1 assigned to bisulfate). OH and oxygen electrosorption from water at potentials more positive of 1.0 V result in relatively small variations in the electrode mass (16 g mol−1 for PtOH and ca. 9 g mol−1 for PtO formation, respectively). The CO-adlayer stripping first leads to the electrode mass decrease in the “pre-peak” region, followed by a fast mass increase within the main stripping peak due to re-adsorption of bisulfate anion (91 g mol−1). A mass-transport limited current for bulk CO oxidation under continuous flow of CO-saturated electrolyte leads to negligible mass changes (0–1 g mol−1) in the PtO region, suggesting that bulk CO oxidation is mediated by electroformed PtO.  相似文献   

17.
Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated. The catalytic current density decreased approximately as MeOH≈EG>FA. Result revealed that BPPGE‐fMWCNT‐Pt/Ru tolerates CO poisoning for FA electrooxidation than when used for the oxidation of the EG or MeOH. Electrochemical impedance spectra are dependent on the oxidation potentials, with equivalent circuit models characteristic of adsorption‐controlled charge transfer kinetics. The results provide important insights into the electrochemical response of these small organic molecules useful in fuel cell technology.  相似文献   

18.
The processes of adsorption and electrooxidation of glucose on a smooth platinum electrode have been investigated in a wide range of pH values. It is found that glucose adsorption are platinum is accompanied by dehydrogenation of adsorbed molecules. The θR vs. Er dependence represents a bell-shaped curve with unequal sides and with a maximum at Er = 0.2 V at 0 < pH < 12 or at Er = 0.4 when pH > 12. The kinetics of adsorption is described by the Roginsky-Zel'dovich equation, and the dependence of the steady-state coverage on the glucose bulk concentrations by the Temkin isotherm.It is shown that in the case of glucose adsorption on platinum Qdehyd.H > QH, i.e. when glucose is brought into contact with a platinum electrode, the catalytic decomposition of glucose molecules occurs in addition to the formation of strongly chemisorbed particles. The transient current at Er < 1.0 V is a current due to the ionization of hydrogen formed during adsorption with dehydrogenation of glucose and its catalytic decomposition. The glucose electrooxidation rate under steady-state conditions at Er < 0.7 V is determined by the interaction of the chemisorbed carbon-containing particle with OHads. The slow step of glucose electrooxidation in the potential range 1.0 < Er < 1.5 V is the interaction of glucose molecules from the solution bulk with the surface platinum oxide, the latter undergoing a quick electrochemical regeneration thereafter.The basic regularities and mechanism of glucose electrooxidation on platinum are shown to be analogous to those obtained earlier for such elementary organic fuels as formaldehyde and formic acid.  相似文献   

19.
A highly sensitive and selective glucose biosensor has been developed based on immobilization of glucose oxidase within mesoporous carbon nanotube–titania–Nafion composite film coated on a platinized glassy carbon electrode. Synergistic electrocatalytic activity of carbon nanotubes and electrodeposited platinum nanoparticles on electrode surface resulted in an efficient reduction of hydrogen peroxide, allowing the sensitive and selective quantitation of glucose by the direct reduction of enzymatically‐liberated hydrogen peroxide at ?0.1 V versus Ag/AgCl (3 M NaCl) without a mediator. The present biosensor responded linearly to glucose in the wide concentration range from 5.0×10?5 to 5.0×10?3 M with a good sensitivity of 154 mA M?1cm?2. Due to the mesoporous nature of CNT–titania–Nafion composite film, the present biosensor exhibited very fast response time within 2 s. In addition, the present biosensor did not show any interference from large excess of ascorbic acid and uric acid.  相似文献   

20.
The adsorption of -phenylalanine (Phe) at the Au(111) electrode surface has been studied using electrochemical techniques and subtractively normalized interfacial Fourier transform infrared (SNIFTIR) techniques. The electrochemical measurements of cyclic voltammetry, differential capacity and chronocoulometry were used to determine Gibbs energies of adsorption and the reference (E1) and sample (E2) potentials to be used in the spectroscopic measurements. The vibrational spectra have been used to determine: (i) the orientation of the molecule at the surface as a function of potential; (ii) the dependence of the band intensity on the surface coverage; (iii) the character of surface coordination, and (iv) the oxidation of adsorbed Phe molecules at positive potentials. The adsorption of Phe is characterized by ΔG values ranging from −18 to −37 kJ mol−1 that are characteristic for a weak chemisorption of small aromatic molecules. The electrochemical and SNIFTIR measurements indicated that adsorbed Phe molecules change orientation as a function of applied potential. At the negatively charged surface Phe is predominantly adsorbed in the neutral form of the amino acid. At potentials positive to the pzc, adsorption occurs predominantly in the zwitterionic form with the ---COO group directed towards the surface and the ammonium group towards the solution. At more positive potentials electrocatalytic oxidation of Phe occurs and is marked by the appearance of the CO2 asymmetric stretch band in the FTIR spectrum. Thus, relative to pzc, Phe is weakly chemisorbed at negative potentials, changes orientation at potentials close to the pzc and is oxidized at positive potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号