首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
During the flow of an emulsion, droplets of the dispersed phase can deform, break up, coalesce or migrate to other regions within the flow field. Understanding these different processes is relevant to morphology development in immiscible polymer blends. Here, emulsions of castor oil in silicone oil were employed to study shear-induced coalescence alone; the conditions chosen were such that drop breakup and drop migration did not occur. A cone-and-plate device and tubes of varying length were used to examine the influence of the average shear rate, the time of shearing, concentration of the dispersed phase, and temperature on the average droplet size. It was found that the extent of “demixing” was not influenced by the spatially non-homogeneous nature of flow in a tube; results correlated very well with the average shear rate. On the other hand, coalescence was significant even when the concentration of the dispersed phase was as low as 0.5%, and it became more important as the concentration was increased. Other results were that the extent of coalescence could be promoted by lowering the shear rate. In quantitative terms, it was found that available coalescence theory gave the correct order of magnitude for the average steady-state droplet size as a function of the imposed shear rate, but the actual variation of drop size with shear rate was gentler than that predicted by theory. An unusual observation was that, under some circumstances, the droplets did not coalesce but simply stuck to each other and maintained their separate identity. Received: 25 March 1999/Accepted: 22 July 1999  相似文献   

2.
3.
Uniaxial elongational flow followed by stress relaxation of a dilute mixture of polystyrene/polymethylmethacrylate) PS/PMMA with PS (5 wt%) as a dispersed phase was investigated. The behavior of the blend was found to be dominated by the PMMA matrix during elongation and by the interface during the relaxation at long time. Such a behavior was related to drop deformation and shape recovery during the relaxation process as was confirmed by morphological analyses on samples quenched within the rheometer just after elongation and at various times during the relaxation process. The morphology and the rheological material functions variation were compared to the Yu model (Yu W, Bousmina M, Grmela M, Palierne JF, Zhou C (2002) Quantitative relationship between rheology and morphology in emulsions. J Rheol 46(6):1381–1399).  相似文献   

4.
  The behavior of a low-density polyethylene melt in exponential shear strain histories is examined and compared to its behavior in constant rate planar elongation. A new set of shear stress and first normal stress difference data in exponential shear are presented and used in several different material functions that have been previously proposed. Viscosities composed of principal stress differences for the two flows showed no correspondence suggesting that, contrary to previous assertions, exponential shear and constant rate planar elongation flows are fundamentally different. It is further suggested that the presence of vorticity makes exponential shear a weak, rather than strong, flow. Received: 5 March 1999/Accepted: 1 September 1999  相似文献   

5.
Stress relaxation in immiscible blends is studied for a well defined shear history, i.e. after prolonged steady state shearing. Model systems are used that consist of quasi-Newtonian liquid polymers. Hence the relaxation is dominated by changes in the morphology of the interface. Both shear stress and the first normal stress are considered. The measurements cover the entire concentration range. For dilute blends the interfacial contribution to the stress relaxation compares well with model predictions. Deviations occur when the matrix phase is slightly elastic. In that case the similarity between the relaxation of shear and normal stresses is also lost. The latter is attributed to a wider drop size distribution.Increasing the concentration of the disperse phase results in a complex evolution of the characteristic relaxation times. The normal stresses relax systematically slower than the shear stresses and the concentration curve includes two maxima. Even for equiviscous components the concentration curves are not symmetrical. It is concluded that even a slight degree of elasticity in the matrix phase drastically affects the morphology and the interfacial relaxation of such blends.  相似文献   

6.
In this work, drop coalescence of polymer blends under shear flow in a parallel flow apparatus was investigated by optical sectioning microscopy. In each experiment, shear rate was set at values low enough to avoid any break-up phenomena. The time evolution of the drop size distribution was determined by motorized sample scanning and iterative acquisition of stacks of images along sample depth. Drop size and location in the acquired images was found by automated image analysis techniques. A systematic experimental campaign to investigate the effects of shear rate (in the range 0.1–0.5 s−1), volume fraction (2.5–10%), and viscosity of the two phases (3–63 Pa s) at different viscosity ratio (0.1–2.3) was carried out. By comparing data from different experiments, it was found that at any strain value, the average drop size decreases monotonically with the shear stress, calculated as the product of shear rate and matrix viscosity. Furthermore, the coalescence rate slowed down with increasing viscosity ratio. Overall, these results provide an extensive set of data, which can be used as a benchmark for modeling shear-induced coalescence in polymer blends.Paper presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

7.
 The material properties of heterogeneous polymer blends are crucially influenced by their morphology, i.e., by the spatial structure of the blend components and by the specific configuration of the interfaces separating the phases. Hence, in order to understand the behavior of experimentally obtained morphologies, one is interested in modeling the relevant dynamics of the morphology subject to external flow. Thus one can study, e.g., through the interfacial stress tensor the rheological properties due to the interfaces. The balance equations used for that purpose are based on a Cahn-Hilliard equation for the local concentration, the continuity equation, and a modified Navier-Stokes equation for the local velocity. The essential material and processing parameters such as surface tension, viscosity and volume fraction of both polymers, and imposed shear rate are taken into consideration as model coefficients. By regarding hydrodynamic interaction, which is proved to be important in case of immiscible blends, the interfacial relaxation is described properly. Simulations in both three and two dimensions agree at least qualitatively with experimental results concerning droplet deformation, droplet coalescence, and interfacial rheological properties of the blend. Received: 25 September 2000 Accepted: 24 April 2001  相似文献   

8.
In this work, we present a methodology to investigate the evolution of drop size distribution, due to coalescence, in liquid-liquid suspensions under simple shear flow. Our approach is based on 3D motorised sample scanning by optical sectioning and offline analysis of the acquired images. The application of such automated procedures allows the detection of a large number of drops, as required to minimise sampling errors and to obtain reliable results according to statistical methods from the literature. Three-dimensional reconstruction of the locations of the drops within the sample allows to evaluate possible wall and sedimentation effects. The proposed methodology is tested on polymer blends of polybutene and silicon oil, and a good reproducibility is found.This paper was presented at the first Annual European Rheology Conference (AERC) held in Guimarães, Portugal, September 11-13, 2003.  相似文献   

9.
Due to the interfacial tension, immiscible blends can show an elastic recovery that is substantially larger than that of their pure components. Here it is attempted to relate the elastic recovery after steady shear flow to the underlying morphology. On the one hand, the predictions of the Palierne and the Doi-Ohta models are calculated for the flow conditions during recoil. On the other hand, systematic recoil experiments after steady state shearing have been performed on a model blend. As the component polymers hardly show any recoil under the stresses applied in these tests, the measured recovery can be attributed completely to the action of the interface. Comparison of the model predictions with the experimental results shows that the recoverable strain can be derived quantitatively from the linear Palierne theory. Although the droplet deformation remained limited during the preshear, the retardation time predicted by this model has to be multiplied by the aspect ratio of the droplet phase to the power 2/3 to describe the experiments. For conditions in which the material does not show an intrinsic length scale, particular scaling relations as derived from the Doi-Ohta theory are found to apply also to recoil. Received: 5 August 1998 Accepted: 17 November 1998  相似文献   

10.
When interfacial tension is increased from zero to infinity, the storage dynamic modulus predicted by Palierne's model varies in a nearly Gaussian fashion with almost equal asymptotic values at the limits of low and high interfacial tension. We report a simple physical discussion of such an effect. Received: 13 January 1999 Accepted: 22 March 1999  相似文献   

11.
12.
Most methods of measuring the interfacial tension between two immiscible polymers are based on the analysis of the shape that a drop of one polymer immersed in the other one exhibits under the action of flow or gravity. In such a situation, the small, yet nonzero mutual solubility between the two polymers acts toward mass transfer between the drop and the surrounding fluid. In this work, diffusion effects on the interfacial tension of the pair polyisobutylene/polydimethylsiloxane have been investigated by drop deformation under shear flow. When the drop was made of polyisobutylene, drop size decreased with time due to diffusion. Drop shrinkage was associated with a significant increase in interfacial tension, until an apparent plateau value was reached. The effect was attributed to a selective migration of molecular weights, which would act to enrich the drop with higher molar mass material. To support such an interpretation, drop viscosity was evaluated by drop shape analysis and it was actually found to increase with time. In some cases, the ratio between drop and continuous phase viscosity became higher than the critical value for drop breakup in shear flow. Upon inverting the phases (i.e., when the drop was made of polydimethylsiloxane), no significant transient effects were observed. In the light of these results, the problem of what are the correct values of interfacial tension and viscosity ratio for a polymer blend of a certain composition will also be discussed. Received: 25 January 1999 Accepted: 24 May 1999  相似文献   

13.
The effect of droplet elasticity on transient deformation of isolated droplets in immiscible polymer blends of equal viscosity was investigated. In terms of the deformation parameter, Def*=a*c/a*+c where a* and c are apparent drop principal axes, it undergoes two cycles of positive oscillations before reaching a negative value, followed by one cycle of oscillation before attaining a steady state negative value. This behavior was observed when Capillary number, Ca, was varied between 3 and 9 at a fixed Weissenber number, Wi, of 0.31, and when Ca number was held fixed at 8 and Wi number was varied between 0.21 and 0.40. In another blend of relatively lower Wi number of 0.21, one cycle of oscillation in Def* was observed before reaching steady state negative values when Ca number was varied between 3 and 14. The steady state Def* varies inversely with Ca number, with a stronger dependence for the blend with higher Wi number. The magnitude of oscillation increases with increasing Ca and Wi numbers. The critical Ca was found to be 12 and 14 for the two blends studied; these values are about 30 times greater than that of Newtonian blends.  相似文献   

14.
The work focuses on the detection of the co-continuity window in immiscible polymer blends. The purpose of the paper is to describe how rheological techniques can help to evaluate the composition range of the co-continuous morphology through the study of a particular system: PEO/PVDF-HFP. First, the blends were characterized by selective dissolution experiments and SEM observations. Then the ability of dynamic mechanical spectroscopy to detect the co-continuity was investigated in the melt and in the solid state. The evolution of the storage modulus of molten blends with their composition at a constant low frequency gives information about the co-continuity interval, especially as far as the onset of the continuity of the PEO phase is concerned. Then the immiscibility of the polymers and the continuity of PVDF-HFP as a function of blend composition have been highlighted by means of dynamic mechanical spectrometry below the melting point of PVDF-HFP. Comparison with results from classical methods shows fair agreement.This paper was presented at the first Annual European Rheology Conference (AERC) held in Guimarães, Portugal, September 11-13, 2003.  相似文献   

15.
 The present work is focused on the rheological properties of two-phase polymer blends in the phase inversion region. A large number of PS/PMMA- and PSAN/PMMA-blends has been investigated in order to establish a rheological criterion which allows the quantitative determination of the phase inversion concentration φPI by rheological means. Three rheological criteria based on the viscous and elastic blend properties such as maximum of dynamic viscosity η′, slope of G′, and maximum of G′ at a constant evaluation frequency have been tested. By correlating the rheological results to data from quantitative morphological analysis we could prove that the chosen rheological criteria are differently suitable for the determination of φPI. It has turned out that the G′ criterion is the most robust and most suitable one yielding an excellent correlation with morphological data. Based on these findings we propose a new simple equation for the prediction of φPI-values. Received: 14 March 2001 Accepted: 15 May 2001  相似文献   

16.
We show how to formulate two-point boundary-value problems in order to compute fully-developed laminar channel and tube flow profiles for viscoelastic fluid models. The formulation is applied to Couette and pressure-driven flows separately, or a combination of both. The application of this methodology is illustrated analytically for the Upper-Convected Maxwell Model, and it is applied computationally for the Phan-Thien/Tanner and Giesekus Models. Numerical solutions exist for the last two models [J.Y. Yoo, H.C. Choi, On the steady simple shear flows of the one-mode Giesekus fluid, Rheol. Acta 28 (1989) 13–24; P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids, J. Fluid Mech. 387 (1999) 271–280; M.A. Alves, F.T. Pinho, P.J. Oliveira, Study of steady pipe and channel flows of a single-mode Phan-Thien–Tanner fluid, J. Non-Newtonian Fluid Mech. 101 (2001) 55–76], allowing verification of the computational technique. Subsequently, the computational algorithm is applied to the constant-volume polymer blend models of Maffettone and Minale [P.L. Maffettone, M. Minale, Equation of change for ellipsoidal drops in viscous flow, J. Non-Newtonian Fluid Mech. 84 (1999) 105–106 (Erratum), J. Non-Newtonian Fluid Mech. 78 (1998) 227–241] and Dressler and Edwards [M. Dressler, B.J. Edwards, The influence of matrix viscoelasticity on the rheology of polymer blends, Rheol. Acta 43 (2004) 257–282; M. Dressler, B.J. Edwards, Rheology of polymer blends with matrix-phase viscoelasticity and a narrow droplet size distribution, J. Non-Newtonian Fluid Mech. 120 (2004) 189–205]. Rheological and morphological properties of the model blends are thus obtained as functions of the spatial position within the channel, applied pressure drop, and shear rate at the wall.  相似文献   

17.
Numerical simulation of bubble breakup phenomena in a narrow flow field   总被引:1,自引:0,他引:1  
Based on the boundary integral method, a 3D bubble breakup model in a narrow flow field is established, and a corresponding computation program is developed to simulate the symmetrical and asymmetrical bubble breakup. The calculated results are compared with the experimental results and agree with them very well, indicating that the numerical model is valid. Based on the basic behavior of bubbles in a narrow flow field, the symmetrical and asymmetrical bubble breakup is studied systematically using the developed program. A feasibility rule of 3D bubble breakup is presented. The dynamics of sub-bubbles after splitting is studied. The influences of characteristic parameters on bubble breakup and sub-bubble dynamics are analyzed.  相似文献   

18.
In this work the effects of electrode morphology on the slit flow of an electrorheological (ER) fluid via laser Doppler anemometry (LDA) are studied. For this purpose, oblique and corrugated electrodes were used. Under a.c.-conditions the ER-effect with the oblique and corrugated electrodes is greater in comparison to the case of smooth electrodes at the same voltage and pressure drop. An average factor of 2.0 and 2.5 (in the range 1–5 kV) describes the increase in the ER-effect for the oblique and corrugated electrodes, respectively. This increase in ER-effect is accompanied by a decrease in electric current. Under d.c.-conditions the ER-effect with the oblique and corrugated electrodes is somewhat better than with the smooth electrodes but only at a very low field strength. Increasing the field strength leads to a decreased ER-effect (in comparison to the smooth electrodes). This decrease of the ER-effect is always accompanied by a decrease in electric current (d.c.-field).  相似文献   

19.
Corn starch and maleic anhydride functionalized synthetic polymers were melt blended in a Haake twin-screw extruder. The amount of starch in the blends was 60 and 70% by weight. The synthetic polymer used was either styrene maleic anhydride (SMA) or ethylene propylene maleic anhydride copolymer (EPMA). The blends did not exhibit normal thermoplastic behavior; and hence, rheological data was obtained by extrusion feeding the material through a slit die or cylindrical tube viscometer. The starch/SMA blends were extruded through a slit viscometer with a 45% half entry angle, while the starch/EPMA blends were extruded through a cylindrical tube viscometer with a half entry angle of 37.5°. For the blends, data could be obtained at low to moderate shear rates (10< app<200s–1). At higher shear rates, blends exhibited slip and/or degradation of starch. The viscosity of the blends exhibited shear-thinning properties. Regrinding and re-extruding through the viscometer a second time showed a significant reduction in shear viscosity for starch/SMA blends. Gel permeation chromatography data indicated that starch macromolecules degraded upon successive extrusion. Extensional viscosity, as estimated from entrance pressure drop method for starch/EPMA blends showed stretch thinning properties. Regrinding and re-extruding showed that the samples were more sensitive to changes in extensional viscosity as observed from the Trouton ratio versus extension rate plot. Optical microscopy showed the presence of starch granules after melt blending, the size of which was related to the torque (or stress) generated during extrusion. The higher the torque, the smaller the size of the starch granules. Successive extrusion runs reduced the number of unmelted granules.Nomenclature A,B Constants associated with power law fluids (Pa sm or n) - e Entrance correction - H Height of slit die (m) - m, n Flow behavior index in shear and extension flow respectively - P s Shear component of the entrance pressure drop (Pa) - P e Extensional component of the entrance pressure drop (Pa) - Q volumetric flow rate (m3S–1) - R o radius of barrel exit (m) - R 1 radius of cylindrical die (m) - T r Trouton ratio - w width of slit die (m) - pressure gradient (Pam–1) - half die entry angle - P en Entrance Pressure Drop (Pa) - apparent extension rate (s–1) - apparent shear rate (s–1) - w wall shear stress (Pa) - first normal stress difference in uniaxial extension (Pa)  相似文献   

20.
 The stress-optical rule relates birefringence to stress. Consequently, measurement of flow birefringence provides a non-intrusive technique of measuring stresses in complex flows. In this investigation we explore the use of an axisymmetric geometry to create a uniaxial elongational flow in polymer melts. In axisymmetric flows both birefringence and orientation angle change continuously along the path of the propagating light. The cumulative influence of the material's optical properties along the light's integrated path makes determination of local birefringence in the melt impossible. One can nevertheless use birefringence measurements to compare with predictions from computer simulations as a means of evaluating the constitutive equations for the stress. More specifically, in this investigation we compare the light intensity transmitted through the experimental set-up vs entry position, with the theoretically calculated transmitted intensity distribution as a means of comparing experiment and simulation. The main complication in our experiments is the use of a flow cell that necessarily consists of materials of different refractive indices. This introduces refraction and reflection effects that must be modeled before experimental results can be correctly interpreted. We describe how these effects are taken into account and test the accuracy of predictions against experiments. In addition, the high temperatures required to investigate polymer melts mean that a further complication is introduced by thermal stresses present in the flow cell glass. We describe how these thermal-stresses are also incorporated in the simulations. Finally, we present some preliminary results and evaluate the success of the overall method. Received: 2 April 2001 Accepted: 27 August 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号