首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel method for producing a plasticised PVC with increased porosity has been developed, by the use of an organic-inorganic hybrid. Silica was produced in situ from tetraethoxysilane via a hydrolytic sol-gel processing route. Tetrahydrofuran was used as co-solvent, and γ-glycidyloxypropyl-trimethoxysilane as coupling agent. The films produced were transparent, with moderate mechanical properties. A film containing 20% silica showed a 45% increase in water vapour permeability.  相似文献   

2.
We report the bioassisted synthesis of gold nanoparticle/silica (Au NP/silica) tubes using layer-by-layer (LBL) assembled poly(L-lysine)/poly(L-tyrosine) (PLL/PLT) multilayer films deposited on the polycarbonate (PC) membrane pores as both mediating agents and templates. The novelty of this approach is the in situ synthesis of Au NP/silica tubes using PLL/PLT multilayer films for sequential growth of Au NPs and silicas. The experimental data revealed that the buildup of the LBL multilayer films was mainly driven by the formation of hydrogen bond and the polypeptide macromolecular assemblies adopted mainly β-sheet conformation. The as-prepared Au NP/silica tubes possessed promising catalytic activity toward the reduction of p-nitrophenol. The synthesis conditions such as the concentration of gold precursor and polypeptide molecular weight were found to influence the gold weight ratio and particle size in the tubes and the catalytic properties of the Au NP/silica tubes. This approach provides a facile, robust, and green method to obtain nonaggregated metal nanoparticles immobilized in porous oxide network at ambient conditions. Using the synergy between biomimetic or bioassisted synthesis of nanostructured materials and LbL assembly technique, a variety of structures such as films, tubes, and capsules comprising of multiple compositions can be obtained.  相似文献   

3.
采用溶胶-凝胶和原位自金属化相结合方法制备聚酰亚胺(PI)/二氧化硅(SiO2)/银(Ag)三元复合薄膜,通过红外(FTIR)、透射电镜(TEM)、动态粘弹谱仪(DMTA)等系统地考察了热处理过程中杂化薄膜结构形态变化以及SiO2含量对金属银向基体表面迁移情况和杂化薄膜各种性能的影响.实验结果表明,在热处理过程中可以同时完成聚酰胺酸的亚胺化、SiO2粒子的形成及银的还原,并且可以通过改变热处理温度和时间或改变SiO2含量来控制银粒子向聚合物基体表面的迁移.  相似文献   

4.
A cheap and environment friendly route towards the synthesis of Polyvinyl alcohol/silica hybrid composites is presented. Polyvinyl alcohol/silicate hybrid materials were synthesised in aqueous medium by the sol-gel method using dil HCl (0.5 N) as catalyst and a cost-effective silica source sodium silicate. The synthesis method was aimed at enhancing the rate of co-condensation of silica within the polyvinyl alcohol matrix. Transparent and flexible hybrid films of homogenous thickness were obtained after gelation at 45°C for 24 h and extended drying for another 48 h. The hybrid composites were characterised by fourier transform infrared spectroscopy (FTIR), scanning electron microscopoy (SEM), thermogravimeric analysis (TGA), tensile strength, elongation at break and water uptake measurements. SEM micrographs revealed that silica was dispersed in the PVA matrix without the large aggregation of particles for a molar composition of 0.0004 PVA:0.048 Sodium silicate: 0.004 HCl.  相似文献   

5.
三甲基氯硅烷对纳米多孔二氧化硅薄膜的修饰   总被引:14,自引:0,他引:14  
王娟  张长瑞  冯坚 《物理化学学报》2004,20(12):1399-1403
以正硅酸乙酯为先驱体,采用溶胶-凝胶法,结合旋转涂胶、超临界干燥工艺在硅片上制备了纳米多孔SiO2薄膜.用三甲基氯硅烷(TMCS)对该SiO2薄膜进行了表面修饰,采用FTIR、TG-DTA、AFM和椭偏仪等方法研究了TMCS修饰前后薄膜的结构、形貌、厚度与介电常数等性能.超临界干燥后的SiO2薄膜含有Si-O-Si与Si-OR结构,呈疏水性.在空气中250 ℃以上热处理后SiO2薄膜因含有Si-OH而呈吸水性. TMCS修饰后的SiO2薄膜在温度不高于450 ℃时可保持其疏水性和多孔结构. SiO2薄膜经TMCS修饰后基本粒子和孔隙尺寸增大,孔隙率提高,介电常数可降低至2.5以下.  相似文献   

6.
本文报道在Sol-gel基材中制备由聚合物稳定的CdS纳米晶的新方法, 即通过甲基丙烯酸镉与甲基丙烯酸羟乙酯共聚合合成了含有Cd 2+的聚合物微凝胶, 在聚合物微凝胶网络中原位聚合正硅酸乙酯形成聚合物互穿的Sol-gel复合基材. 再向该聚合物/二氧化硅复合基材中通入H2S气体得到CdS纳米晶. 在聚合物网络中原位聚合正硅酸乙酯可以降低纯二氧化硅材料的脆性; 另一方面, 二氧化硅可以作为增强剂增加聚合物材料的强度. 因此, 在我们合成的聚合物/二氧化硅复合基材中制备的CdS纳米晶将具有很好的应用前景.  相似文献   

7.
A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor, -glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS) at the atmosphere of imprinting polyethylene glycol (PEG). Self-hydrolysis of GPTMS, self-condensation, and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, and in situ covalent cross-linking of CS created an orderly coating on silica gel surface. PEG extraction using hot ammonium hydroxide solution gave a chemically and mechanically stabilized pore structure and deactivated residual epoxy groups. The prepared matrix was characterized by using X-ray energy dispersion spectroscopy (EDX), scanning electron microscopy (SEM) and mercury intrusion porosimetry. The matrix possessed a high capacity for copper ion loading. Protein adsorption performance of the new immobilized metal affinity adsorbent was evaluated by batch adsorption and column chromatographic experiment using bovine serum albumin (BSA) as a simple model protein. Under the optimized coating conditions, the obtained macroporous surface resulted in a fast kinetics and high capability for protein adsorption, while the matrix non-charged with metal ions offered a low non-specific adsorption.  相似文献   

8.
Polyoxometalates (POMs) are an emerging class of materials which can be considered as inorganic complexes with distinct structural and optical characteristics. To be suitable in biomedical applications such as imaging, the materials may need to be embedded in a suitable host material, which may affect the optical properties of the emitting polyoxometalate. Here, we demonstrate that POMs can successfully be included into a sol-gel derived silica matrix. We report on the effects of one such potential host on the luminescence excitation and emission spectra, as well as the POM luminescence decay times. It appears that the POMs do not interact with the bulk oxide of the matrix, but are retained within the hosts' internal pore structure.  相似文献   

9.
Polymer nanocomposite films with unusual and anisotropic optical properties were obtained by the controlled in-situ generation of noble metal nanoparticles (NPs). Poly(vinyl alcohol) (PVA) and poly(ethylene-co-vinylalcohol) (EVAl) nanocomposites containing gold and silver NPs were efficiently produced by a photo-reduction or thermal process both operating directly in the solid state and resulted efficiently stabilized by the presence of polymer hydroxyl groups, which prevent particles agglomeration. Uniaxial drawing of the NPs/polymer composites promoted anisotropic packing of the embedded particles along the stretching direction of the film, resulting in a shift of the surface plasmon resonance well above 40 nm and thus producing a well-defined polarization-dependent colour change. Such nanostructured materials when are obtained in the form of thin films can be applied to several fields, from sensor to photonics (i.e., macromolecular strain sensor, linear absorbing polarizer).  相似文献   

10.
Polyimide (PI)/silica hybrid films were prepared from tetraethyl orthosilicate (TEOS) using a sol‐gel process as well as pyromellitic dianhydride and 4,4‐oxydianiline. 1,4‐Cyclohexanedicarboxylic acid (1,4‐CHDA) was added as a coupling agent. The PI/silica hybrid films were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, differential scanning calorimetry and wide‐angle X‐ray diffraction. The thermal, tensile and dielectric properties of the hybrid films were measured. The results showed that the tensile and dielectric properties of the hybrid films improved with increasing silica concentration and 1,4‐CHDA content in the PI matrix. Covalent ester bonds were formed between SiOH groups of silica and carboxyl groups of 1,4‐CHDA. As a result, the silica particle size was reduced and dispersed homogeneously in the PI matrix, leading to increased tensile strength and tensile modulus of the typical hybrid film with 1,4‐CHDA (PI‐2), when compared with the PI/silica hybrid film without 1,4‐CHDA at the same silica contents. The presence of an alicyclic moiety containing silica in PI reduced the dielectric constant considerably to 2.83, which was lower than that of pristine PI. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
During the last decade, silica monolithic capillaries have focused more and more attention on miniaturized separation techniques like CEC, nano-LC, and chip electrochromatography owing to their unique chromatographic properties and to their possible in situ synthesis. Nevertheless, the preparation of conventional silica-based individual monolithic columns is time consuming, owing to the individual steps involved, including the synthesis of the silica matrix and its subsequent on-column chemical grafting. The hybrid organic-inorganic monoliths, whose synthesis is based on the polycondensation of siloxane with organosiloxane precursors, seems to be an attractive alternative since their direct synthesis leads to silica monoliths with organic moieties covalently linked to the inorganic silica matrix through hydrolytically stable Si-C bonds. This study describes the synthesis of hybrid monoliths using propyltrimethoxysilane (C3-TriMOS) as a new kind of silica coprecursor to subsequently increase the hydrophobicity of the stationary phase. The influence of several experimental parameters (pH, gelation temperature, relative proportion of the precursors) on the textural (skeleton and macropore size) and chromatographic properties (efficiency, retention, and electroosmotic mobility) of the obtained monoliths are discussed. The results show that the optimal coprecursor incorporation is obtained after a postgelation step during which the condensation of the C3-TriMOS coprecursor is favored by an increase in the pH medium. Thermal hydrolysis of urea previously added to the polymerization mixture allows this in situ pH increase. These hybrid monoliths present hydrophobic properties and allow the separation of test mixtures in the RP mode without any further modification. Moreover, they present excellent efficiencies since reduced plate height as low as 5 and 15 microm are obtained in the electrodriven mode (CEC) and in the hydrodynamic one (nano-LC), respectively.  相似文献   

12.
As functional metal complexes, copper phthalocyanine (CuPc) and Cobalt (II) meso-tetraphenylporphyrin (CoTPP) were chosen to prepare metal complex/polymer hybrid thin films which were prepared by metal complex sublimation and reactive monomer evaporation onto the glass substrate in the bell jar reactor in vacuum conditions. The polarized transmission micrograph images show that the film deposited at 80 °C contains uniformly dispersed tiny grains and the film deposited at 30 °C is amorphous and homogeneous. As the deposition rate increases, the crystalline clusters were found and were dispersed uniformly. Those crystalline clusters are not to be developed by recrystallization process. Deposited metal complex/acrylate hybrid thin films were in situ photopolymerized. The kinetics of photopolymerization was investigated by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The thickness of the films was about 200 nm. The reactive monomer acts as a solvent to avoid the recrystallization of metal complexes and to have two-compositional continuous phase. The percent of metal complex can be adjusted up to 60% by controlling the metal complex sublimation rate. A good achievement in the uniformity and continuity of the film matrix has been made and the recrystallization of metal complex in the hybrid films has not been observed.  相似文献   

13.
The aim of this study was to prepare transparent nanohybrid films with low coefficient of thermal expansion (low CTE), which consist of acryl resin and nanosized clay. The hybrid films with different clay contents were prepared by UV curing of tricyclodecane dimethanol diacrylate (TCDDMDA) including nanosized clay. All obtained films were transparent similar to pure poly(TCDDMDA). In addition, the film containing 40 wt.% of clay showed a low CTE of 10 ppm/K in 150–200 °C, which is similar to that of inorganic materials such as glass. The significant property improvement is related to shape effect and orientation of clay in polymer matrix. Wide-angle X-ray diffraction measurement was carried out to investigate orientation of nanosized clay in polymer matrix. From this measurement, it was confirmed that the clay platelets were oriented parallel with film surface with increasing clay content, and orientation coefficient of the clay in polymer matrix reached to f?=?0.65 for the hybrid film containing 40 wt.% of clay. Though, in comparison with the matrix, the flexibility of the hybrid film evaluated by the wind roll test with steel bar was lowered by increase of clay content, the hybrid film containing 40 wt.% of clay could be rewound with steel bar 10 mm across, and its flexibility was retained.  相似文献   

14.
Coating films containing Au, Ag, Pt and Pd metal colloids have been prepared by sol-gel processing. It is shown that for oxide films the temperature where the metal particles are precipitated by heating in air depends on metal species: 200°C for Au, 600°C for Ag, 800°C for Pt and 1000°C for Pd. The use of reducing atmosphere lowers the temperature for formation of noble metal colloids. This procedure can be used for direct formation of metal colloids from metal ions in the film as well as reduction of oxide particles to metal particles in the film. For an organic-inorganic matrix, noble metal colloids are precipitated by thermal reduction or photo-reduction. Thermal reduction occurs as a result of reduction by decomposing organic matter. Photo-reduction occurs as a result of UV irradiation.  相似文献   

15.
Hybrid nanocomposite films containing silica (??11.4 wt.%) or titania (??18.8 wt.%) in the polymer matrix were prepared by the sol-gel method using the hydrolytic polycondensation of tetraethoxysilane and tetrabutoxysilane in a THF solution of aromatic polymer, polysulfone (PSF). The influence of the oxide nature and the film composition on the structure, the interaction of the polymer with oxides, hydrophilicity, and sorption-diffusion properties of the hybrid films were studied by FTIR spectroscopy, atomic force microscopy, dynamic light scattering, and a complex of other physicochemical methods. The absence of chemical or intermolecular hydrogen bonds between the polymer and oxide particles in the PSF films was shown. The average size of the oxides (SiO2, ??20 nm; TiO2, ??90 nm) in the films and roughness of their surface (??0.2?C0.8 nm) were determined. The introduction of oxides into the polymer matrix increases the hydrophilic properties and the ability of the PSF films to swell in water; the diffusion coefficients of water and permeability of water vapor in the PSF films also increase. Titania also induces a more considerable change in the structure of the polymer matrix and more strongly affects the sorption-diffusion properties of the hybrid films in aqueous solutions of THF. All prepared nanocomposite films PSF/SiO2 and PSF/TiO2 are capable of extracting an organic component from aqueous solutions and can be used as sorbents and membrane films for the removal of organic substances from the aqueous medium.  相似文献   

16.
This paper reports the results of thermogravimetric studies on: (a) Polyamide-6,6 (abbreviated henceforth as PA66) specimens which were modified by electron beam radiation in air, (b) organic-inorganic hybrid nanocomposite films of PA66/silica prepared by the sol-gel technique and (c) unmodified multi-walled carbon nanotube (abbreviated henceforth as MWCNT) reinforced PA66 films. The activation energies were determined using the Kissinger and the Flynn-Wall-Ozawa methods, which do not require knowledge of the reaction mechanism. The results showed that PA66 specimens which received an irradiation dose of 200 kGy in air had a higher thermal stability than both the neat PA66 and PA66 specimens which received a radiation dose of 500 kGy in air. The PA66/silica hybrid nanocomposites up to a silica loading of 1.5 wt% also showed higher thermal stability over neat PA66 films. At MWCNT loadings of 0.5-1.0 wt% the composite films exhibited higher activation energies than the neat PA66 film but at higher MWCNT loading the activation energy was lower than that obtained for the neat PA66 film.  相似文献   

17.
In this work we present a novel route to cover large surfaces with metal and oxide nanoparticles (NPs) by growing and annealing of metallic bilayers. We have used this method to fabricate ensembles of Au and α-Fe2O3 NPs on silica substrates from Fe/Au bilayers. The morphology of the hybrid nanostructures and the presence of defects and disorder can be tuned through the processing parameters as the initial film thickness and the annealing conditions. The proximity effects between both types of NPs alter their physical properties. In particular, we observe that the presence of α-Fe2O3 NPs modifies the surface plasmon resonance of Au NPs.  相似文献   

18.
Mesoporous materials have been proposed for use in numerous biological environments such as substrates for cell culture and controlled release for drug delivery. Although mesoporous silica synthesis is facile, recent reports (Dunphy et al. Langmuir 2003, 19, 10403; Bass et al. Chem. Mater. 2007, 19, 4349) have demonstrated instability (dissolution) of pure mesoporous silica films under biologically relevant conditions. In this work, we demonstrate a simple processing handle (pressure) to control the dissolution of mesoporous silica films that are synthesized using preformed template films and supercritical CO 2. Spectroscopic ellipsometry is utilized to quantify changes in both the film thickness and porosity; these properties provide insight into the dissolution mechanism. The pore size increases as the films are exposed to phosphate-buffered saline (PBS) through preferential dissolution at the pore wall in comparison to the film surface; a mechanism reminiscent of bulk erosion of scaffolds for drug delivery. Thin mesoporous silica film lifetimes can be extended from several hours using traditional sol-gel approaches to days by using CO 2 processing for identical film thickness. Osteoblast attachment and viability on these films was found to correlate with their increased stability. This enhanced stability opens new possibilities for the utilization of mesoporous silica for biological applications, including drug delivery and tissue engineering.  相似文献   

19.
We present a simple and fast method for the synthesis of polyacrylates-silica hybrid materials with significantly low volume shrinkages through the sol-gel reactions of tetraethyl orthosilicate and 2-hydroxyethyl methacrylate along with the free-radical polymerization of the acrylate monomer. The volume shrinkage from the processible sol to the final product was about 6–20% for the hybrid materials having the silica contents up to about 50 wt-%. As a result of the low shrinkage, crack-free, transparent and monolithic hybrid materials of relatively large sizes can be prepared within a short period of 6 to 12 hours. The formation of covalent bonding between the organic and the silica components in the hybrid materials was demonstrated. Thermal stability of the polyacrylate component in the hybrid materials were found to be higher than that of the bulk polymer. Other vinyl polymers such as poly(methyl methacrylate) and polyacrylonitrile have also been incorporated into the inorganic silica sol-gel matrix by using this method.  相似文献   

20.
This work reports the synthesis of a novel polymeric organic-inorganic hybrid. The inorganic component is a silica network obtained by controlled hydrolysis of tetraethyl orthosilicate via sol-gel process and the organic counterpart is partially deacetylated chitin (CHI). The resulting polymer hybrids were homogeneous transparent film forming glassy materials being compatible through a wide composition range. Simultaneous thermal analysis of a CHI/silica 1:1 mixture confirms the intermolecular complex formation between organic and inorganic polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号