首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract— Arginine residues 82 and 227 in bacteriorhodopsin were replaced by glutamine residues, using the site-directed mutagenesis techniques. Mutant bacteriorhodopsins were found to be competent in formation and decomposition of the photocycle M412 intermediate as well as in generation of photoelectric potential provided that pH of the medium is sufficiently high. Lowering of pH results in transition of bacteriorhodopsin into a blue acidic form which cannot produce M412 and photo-potential. The pK values of these transitions for Arg-227 → Gln and Arg-82 → Gln mutants are shifted correspondently for 1 and 4 pH units to a higher pH region in comparison with native bacteriorhodopsin. The rate of the M412 formation in both mutants was similar to that in the native protein. As to M412 decay, it is much slower in Arg-227 → Gln mutant than in native and Arg-82 → Gln bacteriorhodopsins. In all cases, the decay depends only slightly upon pH. It is concluded that Arg-82 is involved in maintenance of a bacteriorhodopsin structure that is resistant to the pH decrease down to 4 whereas Arg-227 is required first of all for the process of Schiff base reprotonation.  相似文献   

2.
Abstract— In purple bacteriorhodopsin sheets adsorbed onto the phospholipid-impregnated collodion film, electrogenic stages are identified correlating with decays of the M and N(P)-type intermediates. It is concluded that both M → N and N → bR transitions are electrogenic.
The M decay is shown to be of a complex kinetics. In purple sheets, the lower the light intensity, the higher the rate of "slow M" decay. Such a dependence, which is absent from monomeric bacteriorhodopsin in proteoliposomes and from Triton X-100-solubilized protein, may be explained by the inhibiting effect of a light-induced conformation change in a bacteriorhodopsin molecule upon the M decay in some other bacteriorhodopsin molecules within the same sheet.
The light intensity-independent "slow M" decay in solubilized bacteriorhodopsin is shown to correlate with the decay of the N intermediate and H+ uptake after the flash. In contrast to "fast M", "slow M" is pH dependent, closely resembling in this respect the N intermediate. It is suggested that there is a fast light-independent equilibration between M and N so that "slow M" represents the portion of the M pool that monitors the N concentration. The M → N equilibrium is assumed to be involved in the effect of the light-induced electric field on the M decay. No direct effect of light on the equilibrium was found.  相似文献   

3.
用闪光动力学光谱仪测量了水平拉制的紫膜LB膜中菌紫质中间体M412的衰减过程,观察了温度和离子对M412衰减过程的影响。实验结果表明:在一定的温度范围内(10℃-60℃),随着温度的升高,M412的衰减速率加快。对M412s的衰减的抑制作用,La3+在低浓度时就很明显,而K+则在较高浓度时才表现出来,Ca2+的影响不明显;La3+对M412f的衰减无明显影响,K+和Ca2+则稍微加快了其速率,pH的变化(H+浓度)明显影响到M412的衰减速率,尤其在高pH情况,M412s的衰减比正常pH值时要慢一个数量级。  相似文献   

4.
Abstract— Time course of formation and crystallization of bacteriorhodopsin upon the addition of retinal to brown apo-membrane has been studied by X-ray diffraction, circular dichroism (CD) spectra and absorption spectra. The rate of formation of bacteriorhodopsin decreases markedly at low pH (4.8) and low temperature (5°C). Furthermore, the formation of bacteriorhodopsin does not proceed in fully dried membranes. The half-time of the increase of exciton CD band is about 70s at 17°C and pH 7.0, and is comparable to that of the formation of bacteriorhodopsins (∼48s). The crystallization of bacteriorhodopsin proceeds to a large extent within 30 min at pH 7.0 and 5°C.
The bilobed CD band of the brown holo-membrane attributed to exciton coupling of bacteriorhodopsin molecules becomes negligibly small at pH 4.8, even though X-ray diffraction pattern indicates the lattice structure to be similar to that of the native purple membrane.  相似文献   

5.
Abstract— The back photoreaction from the M(412nm) intermediate in the photocycle of light-adapted bacteriorhodopsin, BRLA(570 nm), is studied using pulsed laser excitation. The decay of a primarily produced species, MP, regenerates BRLA(570nm) in a process characterized by a half life of 200 ns at 25°C. The absorption maximum of MP is blue shifted (Λmax≃ 395 nm) relative to that of M(412nm). The primary photochemical step, M(412nm) → MP, is attributed to a conformational change in the polyene residue. The energy and entropy of activation of the subsequent MP→ BRLA (570 nm) relaxation are reported and discussed.  相似文献   

6.
Detergent solubilized bacteriorhodopsin (BR) proteins which contain alterations made by site-directed mutagenesis (Asp-96----Asn, D96N; Asp-85----Asn, D85N; and Arg-82----Gln, R82Q) have been studied with resonance Raman spectroscopy. Raman spectra of the light-adapted (BRLA) and M species in D96N are identical to those of native BR, indicating that this residue is not located near the chromophore. The BRLA states of D85N and especially R82Q contain more of the 13-cis, C = N syn (BR555) species under ambient illumination compared to solubilized native BR. Replacement of Asp-85 with Asn causes a 25 nm red-shift of the absorption maximum and a frequency decrease in both the ethylenic (-7 cm-1) and the Schiff base C = NH+ (-3 cm-1) stretching modes of BRLA. These changes indicate that Asp-85 is located close to the protonated retinal Schiff base. The BRLA spectrum of R82Q exhibits a slight perturbation of the C = NH+ band, but its M spectrum is unperturbed. The Raman spectra and the absorption properties of D85N and R82Q suggest that the protein counterion environment involves the residues Asp-85-, Arg-82+ and presumably Asp-212-. These data are consistent with a model where the strength of the protein-chromophore interaction and hence the absorption maximum depends on the overall charge of the Schiff base counterion environment.  相似文献   

7.
The function of three types of bacteriorhodopsins was compared: the wild-type, the bleached and retinal reconstituted and retinal deficient bacteriorhodopsin after retinal addition. The apparent pK(a) of the proton acceptor group for the bleached BR and retinal deficient BR shifted toward higher pH values compared to the wild-type BR. Fitting the photocycle model to the absorption kinetic signals for all three proteins showed the existence of the same intermediates, but the time-dependent concentration of the intermediates was different. Although measurements were made at pH 7, the absorption kinetics and photoelectric signals in both retinal reconstituted samples acted as wild-type bacteriorhodopsin at significantly higher pH. Below pH 3 the retinal deficient and reconstituted sample bleached. These results suggested that the added retinal was not able to rebind in the same position in the protein as in native bacteriorhodopsin. This points out that care should be taken, when bleached bacteriorhodopsin is reconstituted with different retinal analogs.  相似文献   

8.
Abstract— We study the effect of solvent viscosity on the kinetics of the photocycle of bacteriorhodopsin (bR) from Halobacterium halobium. Solvent viscosity is altered by changing the glycerol concentration from 20 to 80% glycerol by volume. The kinetics of the photocycle are observed after flash photolysis at four wavelengths at several temperatures between 240 and 315 K. Assuming a sequential model, bR → K -→ L → M → O → bR, Arrhenius plots of the rate coefficients determine the activation enthalpies and frequency factors for each step. Kinetic data from all solvents are considered together and studied as a function of temperature for fixed solvent viscosities. The early steps of the cycle are insensitive to solvent viscosity, →; the later steps are retarded with increasing viscosity. Activation enthalpies are independent of viscosity; the frequency factors are proportional to η−K, where the exponent k 0.25 for the transition K → L, 0.0 for L → M, 0.8 for M → O and 0.5 for O → bR.  相似文献   

9.
Abstract
In purple bacteriorhodopsin sheets adsorbed onto the phospholipid-impregnated collodion film, electrogenic stages are identified correlating with decays of the M and N(P)-type intermediates. It is concluded that both M N and N bR transitions are electrogenic.
The M decay is shown to be of a complex kinetics. In purple sheets, the lower the light intensity, the higher the rate of "slow M" decay. Such a dependence, which is absent from monomeric bacteriorhodopsin in proteoliposomes and from Triton X-100-solubilized protein, may be explained by the inhibiting effect of a light-induced conformation change in a bacteriorhodopsin molecule upon the M decay in some other bacteriorhodopsin molecules within the same sheet.
The light intensity-independent "slow M" decay in solubilized bacteriorhodopsin is shown to correlate with the decay of the N intermediate and H+ uptake after the flash. In contrast to "fast M", "slow M" is pH dependent, closely resembling in this respect the N intermediate. It is suggested that there is a fast light-independent equilibration between M and N so that "slow M" represents the portion of the M pool that monitors the N concentration. The M N equilibrium is assumed to be involved in the effect of the light-induced electric field on the M decay. No direct effect of light on the equilibrium was found.  相似文献   

10.
Abstract— Kinetic resonance Raman (RR) experiments were designed to study the time-behaviour of the retinal-binding protein bacteriorhodopsin (BR) in its photochemical cycle. The unphotolyzed chro-mophore B-570 and the two intermediates L -550 and M-412 were probed by the characteristic C=C stretching vibrations of the retinal moiety. Time resolution was achieved with a spinning cell as flow system in combination with two CW lasers in a pump-probe configuration. RR spectra were probed at 475 nm at various delay times between pump and probe event. The deconvolution of the spectra into the various components B-570, L-550 and M-412 was carried out by curve fitting procedures. It was found that at pH7.4 L-550 decays — with a time-constant of 62 μs — not completely but to a residual level of 35% of its initial value. This intermediate L -amplitude finally disappears in the ms-range (4.5 ms) synchroneously with the intermediate M -412. An analogeous time-behaviour was found at pH 4.6. In the basic range also an " L " -intermediate could be identified which is coupled to the long-lived M-component. To explain the peculiar time-dependence it is proposed that during the fast decay of L a dynamic equilibrium between L and M is established. Then during the reconstitution of B -570 the two intermediates disappear synchroneously. A molecular model is presented in which the dynamic equilibrium between L and M is explained by an oscillatory motion of a proton from the Schiff base group of the chromophore to its counterion.  相似文献   

11.
Exendin-4中13号残基的分子动力学模拟   总被引:1,自引:0,他引:1  
Exendin-4作为胰腺GLP-1受体上的一种有效的激活剂, 是一种含有39个氨基酸残基的多肽, 其第13号氨基酸Gln突变为Tyr, 使活性增强. 应用分子动力学模拟方法, 分别优化了突变前后, Exendin-4与蛋白的复合物结构, 并对整体结构的性质、静电势、相互作用模式及能量进行了分析. 阐明了Gln突变为Tyr的活性增强的内在原因, 结果表明, 突变的Exendin-4能够通过改变自身结构的局部柔性调整与蛋白受体相互作用, 从而可以改善Exendin-4与其蛋白受体的结合能力.  相似文献   

12.
The flash photolysis kinetic spectra of the intermediate M(412) of bacteriorhodopsin were monitored during the process of acid titration. In the light-adapted state, the maximum peak amplitude of M(412) absorbance of bacteriorhodopsin decreased (pK(a)=3.40+/-0.05) as the pH decreased from 7.3 to 1.9. In the dark-adapted state, the maximum peak amplitude of M(412) absorbance of bacteriorhodopsin increased as the pH decreased from 6.9 to 4.1, and then decreased (pK(a)=2.85+/-0.05) as the pH dropped to 2.1. These different trends in the change in the maximum peak amplitude suggested that not only the transition of purple membrane to blue membrane had taken place in both light and dark-adapted states, but also the fraction of all-trans-bR had changed during the acid titration. The pH-dependent absorption changes at 640 nm of bacteriorhodopsin in both light- and dark-adapted states were also observed. The pK(a)-values of the purple-to-blue transition were 3.80+/-0.05 in light-adapted state and 3.40+/-0.05 in dark-adapted state, respectively. According to Balashov's method, the fraction of all-trans-bR was assayed as the pH decreased. All these results indicated that the purple-to-blue transition of light-adapted bacteriorhodopsin was accompanied by an all-trans to 13-cis retinal isomerization at acidic pH.  相似文献   

13.
In bacteriorhodopsin (bR), Arg-82bR has been proven to be a very important residue for functional role of this light-driven proton pump. The arginine residue at this position is a super-conserved residue among archaeal rhodopsins. pharaonis phoborhodopsin (ppR; or called as "pharaonis sensory rhodopsin II") has its absorption maximum at 498 nm and acts as a sensor in the membrane of Natronobacterium pharaonis, mediating the negative phototaxis from the light of wavelength shorter than 520 nm. To investigate the role of the arginine residue (Arg-72ppR) of ppR corresponding to Arg-82bR, mutants whose Arg-72ppR was replaced by alanine (R72A), lysine (R72K), glutamine (R72Q) and serine (R72S) were prepared. These mutants were unstable in low concentrations of NaCl and lost their color gradually when the proteins were solubilized with 0.1% n-dodecyl-beta-D-maltoside. The order of instability was R72S > R72A > R72K > R72Q > the wild type. The rates of denaturation were reduced in a solution of high concentrations of monovalent anions.  相似文献   

14.
Abstract Melittin and its site-specific mutants differentially delay the slow-decaying component of the photocycle intermediate M412 of bacteriorhodopsin in the purple membrane and the acetylated purple membrane whose several lysine residues are modified. This effect is attributed to the interaction of the total positive charges of melittin or its mutants with the total negative charges of bacteriorhodopsin. The effects of melittin and its mutants on the Triton X-100–solubilized bacteriorhodopsin monomers are somewhat complicated but are associated with their charges. These results show that there is electrostatic interaction between bacteriorhodopsin and melittin and that both N-and C-termini of melittin function as sites of the interaction, with Arg 22 and Arg 24 making a prominent contribution to the effective surface charge of melittin. Melittin, at certain concentrations, partially restores the decreased photoactivity of the bacteriorhodopsin monomers trapped in the Triton-lipid-protein mixed micelles, which suggests that melittin may compete with Triton X-100 for the binding sites on the bacteriorhodopsin monomers. Other kinds of interactions between bacteriorhodopsin and melittin are also indicated. The possible states of melittin in membranes are discussed.  相似文献   

15.
Halobacterium halobium, grown in a defined medium where tyrosine had been largely replaced with m-fluorotyrosine, biosynthetically produced purple membrane. Analysis of this membrane by high pressure liquid chromatography of phenylthiocarbamyl derivatized amino acids of membrane acid hydrolysates revealed that up to 50% of the tyrosine was present as the m-fluorotyrosine form. Yields of the purple membrane decreased as the level of incorporation increased. The experimental purple membrane showed a single 19F NMR resonance at -61.983 ppm (relative to trifluoroacetic acid). The bacteriorhodopsin (bR) in the purple membrane was normal as assayed by gel electrophoresis, isoelectric focusing, circular dichroic spectra, and UV-visible spectra. However, the fluorinated tyrosine bacteriorhodopsins at near neutral pH exhibited slightly slower rates of proton uptake and a slower M-state decay with biphasic kinetics reminiscent of alkaline solutions of bR (pH > 9). These results imply that the tyrosines in bacteriorhodopsin may play a role in the photoactivated proton translocation process of this pigment.  相似文献   

16.
Abstract— The ultraviolet transient absorption assigned to the tyrosinate species in bacteriorhodopsin is followed in time and as a function of pH. Both its rise time and titration curve closely resemble those observed for the production of the M412 intermediate. These results may support a recently proposed mechanism that couples tyrosinate production to the Schiff base deprotonation in the proton pump of bacteriorhodopsin.  相似文献   

17.
Abstract— The picosecond fluorescence kinetics of tryptophan residues in bacteriorhodopsin and some perturbed analogs are measured to study the different tryptophan environments and their changes upon metal cation removal, retinal removal, and M412 trapping. In bacteriorhodopsin, the emission shows four decay components designated Or, C2r, C3r, and C4r in order of increasing lifetimes. The emission wavelength of C3r and C4r is near that found in aqueous solution, while that of C1r is the shortest. The removal of retinal triples the total emission intensity and reduces the number of components to two, suggesting that the observed variation of the lifetimes in bacteriorhodopsin results from the variation of the energy transfer efficiency between different tryptophans and retinal. We conclude that the Or and C2r emission is from the closest tryptophans to the retinal. The quenching of the C3r emission by all metal cations, including those that cannot act as energy acceptors, e.g. Ca2+, is attributed to protein conformation changes caused by metal cation binding which leads to a stronger energy transfer coupling between tryptophans and retinal. The additional quenching of the C2r emission in Eu3+bound bacterioopsin is proposed to result from direct energy transfer between tryptophans and Eu3+.  相似文献   

18.
The effect of lipid environment in purple membrane on bacteriorhodopsin   总被引:3,自引:0,他引:3  
The decay rate of the Bacteriorhodopsin (BR) photocycle intermediate M412 and proton, the proton pump efficiency (H+/M412), the ratios of M412 to other intermediates and the rotational correlation time (tauc) in purple membrane (PM) fragments treated by the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) with different concentrations were studied. The results show that: (1) The largest effect of CHAPS on M412 decay rate and proton decay rate of BR, tauc of PM and the ratios of M412 to other intermediates in BR photocycle is in the range of its critical micelle concentration (CMC). This indicates that changes of the ratios of M412 to other intermediates, tauc, M412 decay and proton decay occur and are due to the variation of the lipid environment. (2) The dependency of proton yield on CHAPS concentrations is basically consistent with that of M412s%. This indicates the relation between proton pumping function and M412. These studies show the importance of maintaining a native environment.  相似文献   

19.
Abstract— The ultraviolet fluorescence spectrum of bacteriorhodopsin is characterized by emission from an ensemble of internal, surface and exposed Trp residues. The temperature dependence of fluorescence yields exhibits a discontinuity at about 30°C coincident with previously observed transitions in membrane lipid microviscosity, photocycle lifetime and photoconductivity. Quenching at high pH coincides with ionization of Tyr and an emission red shift to a spectrum typical of that of tyrosinate. Guanidine hydrochloride produces only partial protein denaturation, increasing the number of exposed Trp by 50%. While exposed Trp in native bacteriorhodopsin are in the minority, they represent a higher proportion of total Trp than is found in rhodopsin of animal rod outer sections.  相似文献   

20.
Abstract— Resonance Raman spectra of various M412 species associated with the bacteriorhodopsin photocycle have been obtained. These correspond to the two forms observed during the formation of M412 and the two forms that are observed during its decay in absorption experimeents. We do not see any significant difference between the Raman spectra of any of these forms. We therefore conclude that the differences in these species are due to the differences in the protein structure and not in the chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号