首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.  相似文献   

2.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential.  相似文献   

3.
The heat capacities of dipolar fluids are investigated using a thermodynamic perturbation theory approach and the NVT and NpT Monte Carlo simulation methods. The theoretical results are compared to corresponding simulation data. The comparison shows that the applied perturbation theory is appropriate for the heat capacity calculations. As an application, the isobaric heat capacity of ammonia is also studied by the Stockmayer fluid model.  相似文献   

4.
A coarse-grained residue-residue interaction potential derived from a statistical analysis of the Protein Data Bank is used to investigate the coil-to-helix transition for polyalanine. The interaction potentials depend on the radial distance between interaction sites, as well as the relative orientation of the sites. Two types of interaction sites are present in the model: a site representing the amino acid side chain, and a site representing a "virtual backbone," i.e., a site located in the peptide bond which accounts for backbone hydrogen bonding. Two chain lengths are studied and the results for the thermodynamics of the coil-to-helix transition are analyzed in terms of the Zimm-Bragg model. Results agree qualitatively and quantitatively with all-atom Monte Carlo simulations and other reduced-model Monte Carlo simulations.  相似文献   

5.
We propose a Monte Carlo (MC) sampling algorithm to simulate systems of particles interacting via very short-ranged discontinuous potentials. Such models are often used to describe protein solutions or colloidal suspensions. Most normal MC algorithms fail for such systems because, at low temperatures, they tend to get trapped in local potential-energy local minima due to the short range of the pair potential. To circumvent this problem, we have devised a scheme that changes the construction of trial moves in such a way that the potential-energy difference between initial and final states drops out of the acceptance rule for the Monte Carlo trial moves. This approach allows us to simulate systems with short-ranged attraction under conditions that were unreachable up to now.  相似文献   

6.
The interaction between colloidal particles is well represented by a hard-core two-Yukawa potential. In order to assess the accuracy of theoretical predictions for the thermodynamic and structural properties of mixed colloids, standard Monte Carlo simulations are carried out for the hard-core two-Yukawa mixtures. In the simulations, one range parameter in the two-Yukawa potential is taken as 1.8 or 2.8647, and another is taken as 4, 8, or 13.5485. Both attractive and repulsive dominant cases of the potential outside the hard core are considered. The effects of temperature, density, composition, size and energy parameter ratios on internal energy, compressibility factor, and radial distribution function are investigated extensively. Theoretical calculations are performed in the framework of analytical solution for the Ornstein-Zernike equation with the first-order mean spherical approximation (FMSA). Our analysis shows that the FMSA is very accurate for the prediction of the compressibility factor of the hard-core two-Yukawa mixtures at all conditions studied. The FMSA generally predicts accurate internal energy, but overestimates the internal energy of the systems at lower temperatures. Furthermore, we found that a simplified exponential version of the FMSA predicts fairly good radial distribution function at contact for the mixed two-Yukawa fluids. The comparison of the theoretical compressibility factor with that from the Monte Carlo simulations suggests that the FMSA can be used to investigate the fluid-fluid equilibria of hard-core two-Yukawa mixtures.  相似文献   

7.
Elastic properties of faced centered cubic (fcc) crystals composed of soft spheres, interacting through potentials of the form u(r) ~ r(-n), have been investigated by Monte Carlo (MC) simulations. It is shown that both the softness parameter (n(-1)) and temperature strongly influence the elastic properties of the studied system. The simulations show explicitly that when T > 0 the elastic constants of the hard sphere crystal can be obtained by taking the limit n --> infinity of soft spheres. When T --> 0 for any finite n, the elastic constants of the soft spheres tend to those of the static model. At all temperatures and softness parameters studied here, n, the Poisson's ratio in [110] (perpendicular direction) is negative.  相似文献   

8.
9.
Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion.  相似文献   

10.
11.
A first-order Barker-Henderson perturbation theory for interaction-site model (ISM) fluids has been applied to calculate the Helmholtz free energy, entropy and internal energy of liquid nitrogen. Comparison with experiment reinforces the idea that the theory is accurate over a wide range of temperatures and densities corresponding to the liquid state, except for the critical region.  相似文献   

12.
A strategy for reducing the risk of non-ergodic simulations in Monte Carlo calculations of the thermodynamic properties of clusters is discussed with the support of some examples. The results obtained attest the significance of the approach for the low-temperature regime, as non-ergodic sampling of potential energy surfaces is a particularly insidious occurrence. Fourier path integral Monte Carlo techniques for taking into account quantum effects are adopted, in conjunction with suitable tricks for improving the procedure reliability. Applications are restricted to Lennard-Jones clusters of rare-gas systems.  相似文献   

13.
An infinitely diluted aqueous solution of Rb+ was studied using ab initio-based model potentials in classical Monte Carlo simulations to describe its structural and thermodynamic features. An existing flexible and polarizable model [Saint-Martin et al. in J Chem Phys 113(24) 10899, 2000] was used for water–water interactions, and the parameters of the Rb+–water potential were fitted to reproduce the polarizability of the cation and a sample of ab initio pair interaction energies. It was necessary to calibrate the basis set to be employed as a reference, which resulted in a new determination of the complete basis set (CBS) limit energy of the optimal Rb+–OH2 configuration. Good agreement was found for the values produced by the model with ab initio calculations of three- and four-body nonadditive contributions to the energy, as well as with ab initio and experimental data for the energies, the enthalpies and the geometric parameters of Rb+(H2O) n clusters, with n = 1,  2,…, 8. Thus validated, the potential was used for simulations of the aqueous solution with three versions of the MCDHO water model; this allowed to assess the relative importance of including flexibility and polarizability in the molecular model. In agreement with experimental data, the Rb+–O radial distribution function (RDF) showed three maxima, and hence three hydration shells. The average coordination number was found to be 6.9, with a broad distribution from 4 to 12. The dipole moment of the water molecules in the first hydration shell was tilted to 55° with respect to the ion’s electric field and had a lower value than the average in bulk water; this latter value was recovered at the second shell. The use of the nonpolarizable version of the MCDHO water model resulted in an enhanced alignment to the ion’s electric field, not only in the first, but also in the second hydration shell. The hydration enthalpy was determined from the numerical simulation, taking into account corrections to the interfacial potential and to the spurious effects due to the periodicity imposed by the Ewald sums; the resulting value lied within the range of the various different experimental data. An analysis of the interaction energies between the ion and the water molecules in the different hydration shells and the bulk showed the same partition of the hydration enthalpy as for K+. The reason for this similarity is that at distances longer than 3 Å, the ion–water interaction is dominated by the charge-(enhanced) dipole term. Thus, it was concluded that starting at K+, the hydration properties of the heavier alkali metal cations should be very similar.  相似文献   

14.
Monte Carlo simulations in the NVT ensemble of the reference hard-sphere fluid have been performed to obtain the “exact” first- and second-order terms in the inverse temperature expansion of the free energy of fluids with hard-core potentials. The results have been used to obtain parametrizations of the free energy of fluids with Sutherland potentials with variable range as well as for a fluid with a hard-core Lennard–Jones potential. The results for the excess energy and the equation of state are compared with simulation data available in the literature for these fluids.  相似文献   

15.
It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O2, H2O (vapor), N2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of temperatures between 250 and 650 K. The magnitudes of the calculated solubilities agree well with experimental results, and the trends with temperature are predicted correctly. The HCE method is used to predict the solubility constants at 298 K of water vapor and oxygen. The water vapor solubilities follow more closely the experimental trend of permeabilities, both ranging over 4 orders of magnitude. For oxygen, the calculated values do not follow entirely the experimental trend of permeabilities, most probably because at this temperature some of the polymers are in the glassy regime and thus are diffusion dominated. Our study also concludes large confidence limits are associated with the calculated Henry's constants. By investigating several factors (terminal ends of the polymer chains, void distribution, etc.), we conclude that the large confidence limits are intimately related to the polymer's conformational changes caused by thermal fluctuations and have to be regarded--at least at microscale--as a characteristic of each polymer and the nature of its interaction with the solute. Reducing the mobility of the polymer matrix as well as controlling the distribution of the free (occupiable) volume would act as mechanisms toward lowering both the gas solubility and the diffusion coefficients.  相似文献   

16.
We have performed lattice Monte Carlo simulations to study the self-assembled morphology of symmetric diblock copolymers in nanopores. The pore diameter and surface preference are systematically varied to examine their effects on the chain conformations, structures of various morphologies, and their phase transition. Various ensemble-averaged profiles and quantities are used to provide detailed information about the system. The simulation results are also compared with the predictions of a strong-stretching theory commonly used in the literature. Such comparisons reveal the deficiencies of this theory in describing the morphologies under cylindrical confinement, and call for further theoretical studies using more accurate formalisms.  相似文献   

17.
We describe a method for calculating free energies and chemical potentials for molecular models of gas hydrate systems using Monte Carlo simulations. The method has two components: (i) thermodynamic integration to obtain the water and guest molecule chemical potentials as functions of the hydrate occupancy; (ii) calculation of the free energy of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state. The approach is applicable to any classical molecular model of a hydrate. We illustrate the methodology with an application to the structure-I methane hydrate using two molecular models. Results from the method are also used to assess approximations in the van der Waals-Platteeuw theory and some of its extensions. It is shown that the success of the van der Waals-Platteeuw theory is in part due to a cancellation of the error arising from the assumption of a fixed configuration of water molecules in the hydrate framework with that arising from the neglect of methane-methane interactions.  相似文献   

18.
19.
Monte Carlo (MC) simulations were performed on the isothermal–isobaric partition functions for both argon and methane gas. A newly implemented form was applied to the calculation of the volume for a variety of pressures, from which many potential applications can be derived.  相似文献   

20.
A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号