首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron drag between two two-dimensional electron systems has been measured in intermediate magnetic fields (/τ<ωckBT) with a relatively low electron density. We explore, in this sample, the unusual increase of drag in intermediate magnetic fields which was well characterized by a nearly temperature independent B3 dependence. The anomalous behavior of electron drag observed in higher density samples is found to persist for low sample density.  相似文献   

2.
The problem of center-of-mass (CM) contaminations in ab initio nuclear structure calculations using configuration interaction (CI) and coupled-cluster (CC) approaches is analyzed. A rigorous and quantitative scheme for diagnosing the CM contamination of intrinsic observables is proposed and applied to ground-state calculations for 4He and 16O. The CI and CC calculations for 16O based on model spaces defined via a truncation of the single-particle basis lead to sizable CM contaminations, while the importance-truncated no-core shell model based on the NmaxΩ space is virtually free of CM contaminations.  相似文献   

3.
Ciann-Dong Yang   《Annals of Physics》2006,321(12):2876-2926
This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schrödinger equation. Using complex canonical variables, a formal proof of the quantization axiom p →  = −i, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov–Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion.  相似文献   

4.
Photocurrent (PC) spectroscopy is employed to study the carrier escape from self-assembled InAs/GaAs quantum dots (QDs) embedded in a Schottky photodiode structure. As a function of the applied field, we detect a shift of the exciton ground-state transition due to the quantum-confined Stark effect (). The tunneling time, which is directly related to the observed photocurrent linewidth due to τ/(2Γ), changes by a factor of five in the photocurrent regime. The measured linewidth dependency on the electric field is modeled by a simple 1D WKB approximation for the tunneling process, which shows that the energetic position of the wetting layer is important for the measured tunneling time out of the dot. In addition to that we present cross-sectional atomic force measurements (AFM) of the investigated photodiode structure. The method needs a minimum of time and sample preparation (cleaving and etching) to obtain the dot density, dot distribution, and give an estimate of the dot dimensions. Etching only the cleaved surface of the sample opens up the opportunity to determine the properties of a buried dot layer before or even after device fabrication.  相似文献   

5.
V.B. Mandelzweig   《Annals of Physics》2006,321(12):2810-2829
It is shown that the quasilinearization method (QLM) sums the WKB series. The method approaches solution of the Riccati equation (obtained by casting the Schrödinger equation in a nonlinear form) by approximating the nonlinear terms by a sequence of the linear ones, and is not based on the existence of a smallness parameter. Each pth QLM iterate is expressible in a closed integral form. Its expansion in powers of reproduces the structure of the WKB series generating an infinite number of the WKB terms. Coefficients of the first 2p terms of the expansion are exact while coefficients of a similar number of the next terms are approximate. The quantization condition in any QLM iteration, including the first, leads to exact energies for many well known physical potentials such as the Coulomb, harmonic oscillator, Pöschl–Teller, Hulthen, Hyleraas, Morse, Eckart, etc.  相似文献   

6.
The tunneling conductance in a NG/SG graphene junction in which the graphene was grown on a SiC substrate is simulated. The carriers in the normal graphene (NG) and the superconducting graphene (SG) are treated as massive relativistic particles. It is assumed that the Fermi energy in the NG and SG are EFN400 meV and EFS400 meV+U, respectively. Here U is the electrostatic potential from the superconducting gate electrode. It is seen that the Klein tunneling disappears in the case where a gap exist in the energy spectrum. As U→∞, the zero bias normalized conductance becomes persistent at a minimal value of G/G01.2. The normalized conductance G/G0 is found to depend linearly on U with constant slope of , where is the size of the gap Δ opening up in the energy spectrum of the graphene grown on the SiC substrate. It is found that G/G02+αU for potentials in the range −270 meV<U<0 meV and G=0 for potentials U<−270 meV. As α→∞, the conductance for eV=Δ (V is the bias voltage placed across the NG/SG junction) can be approximated by a unit step function G(eV=Δ,U)/G02Θ(U). This last behavior indicates that a NG/SG junction made with gapped graphene could be used as a nano switch having excellent characteristics.  相似文献   

7.
Using the collinear QCD factorization approach, we study the single-transverse-spin dependent cross section Δσ(S) for the hadronic production of two jets of momenta P1=P+q/2 and P2=−P+q/2. We consider the kinematic region where the transverse components of the momentum vectors satisfy PqΛQCD. For the case of initial-state gluon radiation, we show that at the leading power in q/P and at the lowest non-trivial perturbative order, the dependence of Δσ(S) on q decouples from that on P, so that the cross section can be factorized into a hard part that is a function only of the single scale P, and into perturbatively generated transverse-momentum dependent (TMD) parton distributions with transverse momenta .  相似文献   

8.
Contour graphs of 2 vs 4 for different film thicknesses and a range of angles of incidence have been plotted for the ellipsometric functions Δ and Ψ in both the reflection and transmission modes. In the case of reflection ellipsometry, when the plots for ΔR and ΨR are superimposed, the two sets of contours cross nearly at right angles over a large part of the field, this being indicative of the high accuracy obtainable in using this technique to determine 4 and 2 and hence the optical constants, n and k, for the film material. The reflection ellipsometric technique is accurate over angles of incidence between 30° and 75° and for a range of film thicknesses between λ/30 and 5λ. Transmission ellipsometry is less useful, due to anomalies in both Xs and Xp where sudden phase changes of ±π occur in regions of interest. There is also the possibility of multiple solutions, although the use of a multiangle technique would enable the “correct” values to be more easily determined.  相似文献   

9.
q-Space diffusion MRI (QSI) provides a means of obtaining microstructural information about porous materials and neuronal tissues from diffusion data. However, the accuracy of this structural information depends on experimental parameters used to collect the MR data. q-Space diffusion MR performed on clinical scanners is generally collected with relatively long diffusion gradient pulses, in which the gradient pulse duration, δ, is comparable to the diffusion time, Δ. In this study, we used phantoms, consisting of ensembles of microtubes, and mathematical models to assess the effect of the ratio of the diffusion time and the duration of the diffusion pulse gradient, i.e., Δ/δ, on the MR signal attenuation vs. q, and on the measured structural information extracted therefrom. We found that for Δ/δ  1, the diffraction pattern obtained from q-space MR data are shallower than when the short gradient pulse (SGP) approximation is satisfied. For long δ the estimated compartment size is, as expected, smaller than the real size. Interestingly, for Δ/δ  1 the diffraction peaks are shifted to even higher q-values, even when δ is kept constant, giving the impression that the restricted compartments are even smaller than they are. When phantoms composed of microtubes of different diameters are used, it is more difficult to estimate the diameter distribution in this regime. Excellent agreement is found between the experimental results and simulations that explicitly account for the use of long duration gradient pulses. Using such experimental data and this mathematical framework, one can estimate the true compartment dimensions when long and finite gradient pulses are used even when Δ/δ  1.  相似文献   

10.
We investigate the entanglement dynamics and decoherence of a two-qubit system under a quantum spin environment at finite temperature in the thermodynamics limit. For the case under study, we find different initial states will result in different entanglement evolution, what deserves mentioning here is that the state |Ψ=cosα|01+sinα|10 is most robust than other states when π/2<α<π, since the entanglement remains unchanged or increased under the spin environment. In addition, we also find the anisotropy parameter Δ can suppress the destruction of decoherence induced by the environment, and the undesirable entanglement sudden death arising from the process of entanglement evolution can be efficiently controlled by the inhomogeneous magnetic field ζ.  相似文献   

11.
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on multi-layered cuprate superconductor Ba2Ca5Cu6O12 (O1−x Fx)2 are carried out. STM topographies show randomly distributed bright spot structures with a typical spot size of 0.8 nm. These bright spots are occupied about 28% per one unit cell of c-plane, which is comparable to the regular amount of apical oxygen of 20% obtained from element analysis. Tunneling spectra simultaneously show both the small and the large gap structures. These gap sizes at 4.9 K are about Δ 15 meV and 90 meV, respectively. The small gap structure disappears at the temperature close to TC, while the large gap persists up to 200 K. Therefore, these features correspond to the superconducting gap and pseudogap, respectively. These facts give evidence for some ordered state with large energy scale even in the superconducting state. For the superconducting gap, the ratio of 2Δ/KBTC = 4.9 is obtained with TC = 70 K, which is determined from temperature dependence of the tunneling spectra.  相似文献   

12.
《Physics letters. [Part B]》2009,680(5):417-422
We report on the first measurement of the differential cross section of -meson photoproduction for the d(γ,pK+K)n exclusive reaction channel. The experiment was performed using a tagged-photon beam and the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. A combined analysis using data from the d(γ,pK+K)n channel and those from a previous publication on coherent production on the deuteron has been carried out to extract the N total cross section, σN. The extracted N total cross section favors a value above 20 mb. This value is larger than the value extracted using vector-meson dominance models for photoproduction on the proton.  相似文献   

13.
We investigate modification of Kolmogorov wave turbulence in QCD calculating gluon spectra as functions of time in the presence of a low energy source which feeds in energy density in the infrared region at a time-dependent rate. Then considering the picture of saturation constraints as has been constructed in the “bottom-up” thermalization approach we revisit that picture for RHIC center-mass energy, W=130 GeV, and also extend it to LHC center-mass energy, W=5500 GeV, thus for two cases having an opportunity to calculate the equilibration time, τeq|therm, of the gluon system produced in a central heavy ion collision at mid-rapidity region. Thereby, at RHIC and LHC energies we can match the equilibration time, obtained from the late stage gluon spectrum of the modified Kolmogorov wave turbulence, onto that of the “bottom-up” thermalization and other evolutional approaches as well. In addition, from the revised “bottom-up” approach we find the gluon liberation coefficient to be on the average, ε0.81–1.06 at RHIC and ε0.50–0.56 at LHC. We also present other phenomenological estimates of τtherm which, at QCD realistic couplings, yield 0.45–0.65 fmτtherm0.97–2.72 fm at RHIC and 0.31–0.40 fmτtherm0.86–2.04 fm at LHC. We show that the second upper-bounds of τtherm in both cases are due to the late stage gluon spectrum of the original Kolmogorov wave turbulence in QCD, previously deduced with a low energy source which feeds in energy density at a constant rate. On the other hand, the lower-bounds and first upper-bounds of τtherm are due to the late stage gluon spectrum of the modified QCD wave turbulence, deduced here at the specific time-dependent rate. In the latter case, at certain conditions, taking also into account both very small and realistic couplings we give estimates: 0.65 fmτtherm1.29 fm at RHIC and 0.52 fmτtherm1.16 fm at LHC, as well as at realistic couplings we find 0.53<τtherm<0.7 fm at RHIC and 0.41<τtherm<0.65 fm at LHC.  相似文献   

14.
(K0.5Na0.5)NbO3 (KNN) single crystals were grown using a high temperature flux method. The dielectric permittivity was measured as a function of temperature for [001]-oriented KNN single crystals. The ferroelectric phase transition temperatures, including the rhombohedral–orthorhombic TRO, orthorhombic–tetragonal TOT and tetragonal–cubic TC were found to be located at −149  C, 205 C and 393 C, respectively. The domain structure evolution with an increasing temperature in [001]-oriented KNN single crystal was observed using polarized light microscopy (PLM), where three distinguished changes of the domain structures were found to occur at −150  C, 213 C and 400 C, corresponding to the three phase transition temperatures.  相似文献   

15.
Interband absorption and luminescence of quasi-two-dimensional, circularly symmetric, Ne-electron quantum dots are studied at high magnetic fields, 8B60 T, and low temperatures, T2 K. In the Ne=0 and 1 dots, the initial and final states of such processes are fixed, and thus the dependence on B of peak intensities is monotonic. For larger systems, ground state rearrangements with varying magnetic field lead to substantial modifications of the absorption and luminescence spectra. Collective effects are seen in the Ne=2 and 3 dots at “filling fractions” and .  相似文献   

16.
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. , in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as  = r + ii and μ = μr + iμi. The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability i > 0 and μi > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability i < 0 and μi < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters r, μr, i, and μi, in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re{Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously  < 0 and μ < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for r < 0, μr > 0, i > 0, and μi > 0, the refractive index is negative n < 0 provided μi/i > μr/r.  相似文献   

17.
Thin films of InP were prepared onto glass and quartz substrates using laser ablation technique. Some of the prepared films were irradiated using a 60Co γ -ray source irradiation with a total dose of 100 kGy at room temperature. The as deposited and irradiated films were identified by scanning electron microscopy, SEM and X-ray diffraction, XRD. The SEM images have shown a nano-flower like structure for the as deposited films and influenced by the irradiation dose. The Optical characterizations of the as deposited and irradiated InP films were studied using spectrophotometric measurements of transmittance T(λ) and reflectance, R(λ) at normal incidence of light in the spectral range from 200 nm to 2500 nm. The refractive index, n, and the absorption index, k values were calculated using a modified computer program based on minimizing (ΔT)2 and (ΔR)2 simultaneously, within the desired accuracy. Analysis of the dispersion of the refractive index in the range 900 ≤ λ ≤ 2500 was discussed in terms of the single oscillator model. The optical parameters, such as the dispersion energy, Ed, the oscillator energy, Eo, the high frequency dielectric constant, and the lattice dielectric constant, L were evaluated for the as deposited and irradiated films. The allowed optical transitions were found to be direct for the as deposited and irradiated films with energy gaps of 1.35 eV and 1.54 eV, respectively.  相似文献   

18.
We present a basic experiment by which the evolution of the displacement probability density (propagator) of static or flowing fluid inNsuccessive time intervals is obtained by single labeling, coupled with multiple rephasing events during the course of a pulsed field-gradient sequence. We term this type of sequence SERPENT: SEquential Rephasing by Pulsed field-gradients Encoding N Time-intervals. Realizations of the SERPENT experiment for the caseN= 2 which include spin echo, stimulated echo, and Carr–Purcell pulse sequences are suggested. They have in common a spatial spin-labeling of the initial magnetization by a gradient of area q0, followed by successive rephasing via gradients q1and q2at timest= Δ1andt= Δ2, respectively, where q0+ q1+ q2= 0. A two-dimensional Fourier transform with respect to q1and q2gives directly the joint probability densityW2(R1, Δ1; R2, Δ2) for displacements R1and R2in times Δ1and Δ2, respectively. q1and q2may be in arbitrary directions. Assuming R1R2, the correlation coefficient ρR1,R2then reflects the time-history of the fluctuating velocities. The behavior of the cross moment R11) · R22) can be obtained from either a full two-dimensional or a set of one-dimensional SERPENT measurements. Experimental results are presented for water flowing through a bed of packed glass beads. While Δ1is appropriately chosen to sample the short-time velocity field within the system, increasing Δ2clearly shows the loss of correlation when the average fluid element displacement exceeds the bead diameter.  相似文献   

19.
Linear first-order systems of partial differential equations (PDEs) of the form f=Mg, where M is a constant matrix, are studied on vector spaces over the fields of real and complex numbers. The Cauchy–Riemann equations belong to this class. We introduce on the solution space a bilinear *-multiplication, playing the role of a nonlinear superposition principle, that allows for algebraic construction of new solutions from known solutions. The gradient equation f=Mg is a simple special case of a large class of systems of PDEs, admitting a *-multiplication of solutions. We prove that any gradient equation has the exceptional property that the general analytic solution can be expressed as *-power series of certain simple solutions.  相似文献   

20.
This paper reports that monitoring the composition of the c(0 0 0 1), a(11–20) and m(10–10) sapphire surfaces is essential for a proper interpretation of the surface morphologies obtained after annealing at 1253 and 1473 K in ArH2 or ArO2 atmospheres. Our experimental investigations, which have used Auger electron spectroscopy (AES) and atomic force microscopy (AFM) on the surfaces of 99.99% pure sapphire wafers, have led to the following original conclusions: (i) Calcium segregates at the c-surface of sapphire both under ArO2 and ArH2. (ii) Potassium adsorption enhances the kinetics of step-bunching on the c-surface under ArO2. (iii) The step edges on the a-surface may develop a comb-like morphology made of parallel strips along the [10–10] direction. (iv) At 1253 K, clean m-surfaces may be stable. (v) Under ArH2, alumina surface diffusion is much slower than under ArO2 for all surface orientations, the surface concentration of impurities is low, and the Al–O ratio of the AES signals at the surface is significantly larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号