首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.  相似文献   

2.
The combined atomic force-electrochemical microscopy (AFM-SECM) technique was used in aqueous solution to determine both the static and dynamical properties of nanometer-thick monolayers of poly(ethylene glycol) (PEG) chains end-grafted to a gold substrate surface. Approach of a microelectrode tip from a redox end-labeled PEG layer triggered a tip-to-substrate cycling motion of the chains' free ends as a result of the redox heads' oxidation at the tip and re-reduction at the substrate surface. As few as approximately 200 chains at a time could be addressed in such a way. Quantitative analysis of the data, in the light of a simple model of elastic bounded diffusion SECM positive feedback, gave access to the end-tethered polymer layer thickness and the end-to-end diffusion coefficient of the chains. The thickness of the grafted PEG layer was shown to increase with the chain surface coverage, while the end-to-end diffusion coefficient was found to be constant and close to the one predicted by Rouse dynamics. At close tip-substrate separation, slowing of the chains' motion, as a consequence of their vertical confinement within the tip-substrate gap, was observed and quantitatively modeled.  相似文献   

3.
We report the direct delivery and assembly of negatively charged gold colloidal particles atop positively charged amino-terminated silicon oxide surfaces using a nanofountain atomic force microscopy probe. The experimental results and fluid simulations indicate that the flow of nanoparticles is confined to the core tip region of the probe. This leads to the assembly of high-resolution submicron patterns (200 nm) on the substrate with feature sizes dependent on the tip-substrate contact time. A diffusion mechanism for the patterning is proposed and discussed.  相似文献   

4.
A dual-electrode configuration for the highly selective detection of glucose in the diffusion layer of the substrate electrode is presented. In this approach, a glassy carbon electrode (GCE, substrate) modified with a conductive layer of glucose oxidase/Nafion/graphite (GNG) was used to create an interference-free region in its diffusion layer by electrochemical depletion of interfering electroactive species. A Pt microelectrode (tip, 5 microm in radius) was located in the diffusion layer of the GNG-modified GCE (GNG-G) with the help of scanning electrochemical microscopy. Consequently, the tip of the electrode could sense glucose selectively by detecting the amount of hydrogen peroxide (H2O2) formed from the oxidization of glucose on the glucose oxidase layer. The influences of parameters, including tip-substrate distance, substrate potential, and electrolyzing time, on the interference-removing efficiency of this dual-electrode approach have been investigated systematically. When the electrolyzing time was 30 s, the tip-substrate distance was 1.8 a (9.0 microm) (where a is the radius of the tip electrode), the potentials of the tip and substrate electrodes were 0.7 V and 0.4 V, respectively, and a mixture of ascorbic acid (0.3 mM), uric acid (0.3 mM), and 4-acetaminophen (0.3 mM) had no influence on the glucose detection. In addition, the current-time responses of the tip electrode at different tip-substrate distances in a solution containing interfering species were numerically simulated. The results from the simulation are in good agreement with the experimental data. This research provides a concept of detection in the diffusion layer of a substrate electrode, as an interference-free region, for developing novel microelectrochemical devices.  相似文献   

5.
The atomic force microscope (AFM) has been used to measure surface forces between silicon nitride AFM tips and individual nanoparticles deposited on substrates in 10(-4) and 10(-2) M KCl solutions. Silica nanoparticles (10 nm diameter) were deposited on an alumina substrate and alumina particles (5 to 80 nm diameter) were deposited on a mica substrate using aqueous suspensions. Ionic concentrations and pH were used to manage attractive substrate-particle electrostatic forces. The AFM tip was located on deposited nanoparticles using an operator controlled offset to achieve stepwise tip movements. Nanoparticles were found to have a negligible effect on long-range tip-substrate interactions, however, the forces between the tip and nanoparticle were detectable at small separations. Exponentially increasing short-range repulsive forces, attributed to the hydration forces, were observed for silica nanoparticles. The effective range of hydration forces was found to be 2-3 nm with the decay length of 0.8-1.3 nm. These parameters are in a good agreement with the results reported for macroscopic surfaces of silica obtained using the surface force apparatus suggesting that hydration forces for the silica nanoparticles are similar to those for flat silica surfaces. Hydration forces were not observed for either alumina substrates or alumina nanoparticles in both 10(-4) M KCl solution at pH 6.5 and 10(-2) M KCl at pH 10.2. Instead, strong attractive forces between the silicon nitride tip and the alumina (nanoparticles and substrate) were observed.  相似文献   

6.
《Chemical physics letters》1987,141(4):366-368
The conditions necessary for studying biological molecules with the atomic force microscope are discussed. It is shown that in order to avoid large substrate deformations the microscope should be operated in its attractive mode where the van der Waals force between the tip and the substrate is ≈ 10−11 N and where the tip-substrate separation is of the order of 4–5 Å.  相似文献   

7.
A major theme in scanning electrochemical microscopy (SECM) is a methodology for nanoscale imaging with distance control and positional feedback of the tip. We report the expansion of intermittent contact (IC)-SECM to the nanoscale, using disk-type Pt nanoelectrodes prepared using the laser-puller sealing method. The Pt was exposed using a focused ion beam milling procedure to cut the end of the electrode to a well-defined glass sheath radius, which could also be used to reshape the tips to reduce the size of the glass sheath. This produced nanoelectrodes that were slightly recessed, which was optimal for IC-SECM on the nanoscale, as it served to protect the active part of the tip. A combination of finite element method simulations, steady-state voltammetry and scanning electron microscopy for the measurement of critical dimensions, was used to estimate Pt recession depth. With this knowledge, the tip-substrate alignment could be further estimated by tip approach curve measurements. IC-SECM has been implemented by using a piezo-bender actuator for the detection of damping of the oscillation amplitude of the tip, when IC occurs, which was used as a tip-position feedback mechanism. The piezo-bender actuator improves significantly on the performance of our previous setup for IC-SECM, as the force acting on the sample due to the tip is greatly reduced, allowing studies with more delicate tips. The capability of IC-SECM is illustrated with studies of a model electrode (metal/glass) substrate.  相似文献   

8.
扫描探针刻蚀技术可控构建牛血清白蛋白纳米结构   总被引:2,自引:0,他引:2  
利用Dip-pen纳米刻蚀技术(简称DPN技术)在云母基底上构建出形状、尺寸可控的牛血清白蛋白(BSA)纳米结构.考察了针尖接触基底时间及针尖下行距离对构建的牛血清白蛋白纳米结构的影响.较长的针尖-基底接触时间及较深的下行距离可以沉积更多的牛血清白蛋白分子,构建牛血清白蛋白纳米结构的形状除了与墨水分子的本身性能有关,还与墨水-基底的相互作用有关.这些形状及尺寸可控的蛋白质纳米结构可以作为模板,进行金属、半导体等其它材料的组装,有望用于制造光电纳米器件及生物纳米器件.  相似文献   

9.
The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAMs) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant beta = 0.57 +/- 0.03 A-1 was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of approximately 1 A-1 found when the separation is varied by changing the length of the alkanethiol molecules. Calculations indicate that, for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.  相似文献   

10.
We synthesized an alpha-helical peptide containing two terminal thiol groups and demonstrated the method of preparation of a self-assembled monolayer (SAM) on gold with uniform orientation of the molecules on the surface. The monolayers were employed as model systems for the investigations of mediated electron transfer. The measurements of electron transfer efficiency through the peptide were performed using scanning tunneling spectroscopy (STS). The molecules were trapped between the gold tip and the substrate using a Au-S linkage. The electron transfer behavior of the peptide was examined as a function of the tip-substrate distance at fixed bias voltage and as a function of bias voltage at a fixed distance between the tip and the substrate. The data obtained from these experiments indicated that the electron transfer through alpha-helical peptide is very efficient, and its conductivity is comparable to those observed for dodecanedithiol. There is also a directional dependence of electron transmission through the peptide, which is connected with the electric field generated by the molecular dipole of the helix.  相似文献   

11.
AFM诱导正十八硫醇在金基底上的选择性生长   总被引:1,自引:0,他引:1  
扫描探针显微镜(SCCnningPF0boMICCOSCOPy,SPM)由于其极高的空间分辨能力和高度的可控性,已成为纳米尺度加工的有力工具[‘·’j.自Schneir等[’j报道原子级平整金基底的制备和用装备An针尖的扫描隧道显微镜(ScanningTunnelingMicroscoPy,STM)在基底上制备金纳米点以来,有关在All和HOPG等基底上制备由金点构成的任意图案的方法及用导电原子力显微镜(AtomicForceM卜roscopy,AFM)在HOPG和St基底上制备金点阵的工作已有许多报道[‘·’‘.用导电AFM和TaPPingmodeAFM”,’‘对St进行直接氧化可在其表面加…  相似文献   

12.
A novel method for covalent attachment of ultrathin silica films (thickness <10 nm) to gold substrates is reported. Silica layers were prepared using spin-coating of sol-gel precursor solutions onto gold substrates that were cleaned and oxidized using UV photo-oxidation in an ozone atmosphere. The gold oxide layer resulting from this process acts as a wetting control and adhesive agent for the ultrathin silica layer. Control of silica layer thickness between approximately 6 and 60 nm through modification of precursor solution composition or by repetitive deposition is demonstrated. Films were characterized using infrared spectroscopy, ellipsometry, atomic force microscopy, and cyclic voltammetry. For the standard deposition parameters developed here, films were determined to be 5.5 +/- 0.75 nm thick, and were stable in aqueous solutions ranging in pH from 2 to 10 for at least 30 min. Films contained nanoscopic defects with radii of 相似文献   

13.
Atomic force microscopy (AFM) has been used to determine the surface energy of chemically modified surfaces at a local scale. In order to achieve this aim, it was necessary to graft both the AFM tip and the substrate with the same chemical functional groups. Two different organothiols terminated either by hydrophilic or hydrophobic chemical functionalities were used. Grafting process classically reported shows that after UV/ozone treatment for 30 min, the tip is coated by thermal deposition with 4‐5‐nm‐thick titanium layer followed by a 30‐nm‐thick gold layer. Finally, the tip is grafted by organothiols. The thickness of the layer deposited on the tip is of the same order of magnitude as the tip radius. To avoid the use of Ti and to decrease the thickness of the gold layer, we have developed a new way of grafting by using organic molecules like (3‐mercaptopropyl)triethoxysilane (MPS) as a linkage agent. Then this way of grafting was checked. Finally, AFM force‐distance curves, between grafted tips and chemically modified surface, were carried out in contact mode. Calibration of the various parts of the apparatus and especially of the cantilever (spring constant and tip radius) is of major importance to reach quantitative data. Finally, by applying a suitable theory of contact, we were able to determine the surface energy of our system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We explored the bionanofabrication of silicon nanopillar structures using ordered gold nanoparticle arrays generated from microbial surface layer (S-layer) protein templates. The S-layer template used for these thin film processing experiments was isolated from the Gram-positive bacterium Deinococcus radiodurans. In this preliminary work, S-layers preimmobilized onto chemically modified silicon substrates were initially used to template the fabrication of a nanolithographic hard mask pattern comprised of a hexagonally ordered array of 5-nm gold nanoparticles (lattice constant = 18 nm). Significantly, the use of the biotemplated gold nanoparticle mask patterns in an inductively coupled plasma (ICP) etching process successfully yielded silicon nanopillar structures. However, it was found that the resultant nanopillars (8–13 nm wide at the tip, 15–20 nm wide at half-height, 20–30 nm wide at the base, and 60–90 nm tall) appeared to lack any significant degree of translational ordering. The results suggest that further studies are needed in order to elucidate the optimal plasma processing parameters that will lead to the generation of long-range ordered arrays of silicon-based nanostructures using S-layer protein templates.  相似文献   

15.
Self-assembled monolayers of alpha-helical peptides on a gold surface were employed as model systems for the investigation of mediated electron transfer. The peptides contained 14, 15, 16, and 17 amino acid residues. The measurements of electron transmission through single molecules of helical peptides were performed using scanning tunneling spectroscopy (STS). The molecules were trapped between the gold tip and the substrate. Electrical contact between the molecule and the gold probe was achieved by the use of peptides containing thiol groups present at each end of the helix. The conductance behavior of the peptides was examined as a function of tip-substrate distance at fixed bias voltage. Measurements performed with peptides containing different numbers of amino acid residues indicate that the distance dependence of electron transmission through an alpha-helix is weaker than that through simple n-alkyl bridges.  相似文献   

16.
Plasmonic nanoparticles (e.g., gold, silver) have attracted much attention for biological sensing and imaging as promising nanoprobes. Practical biomedical applications demand small gold nanoparticles (Au NPs) with a comparable size to quantum dots and fluorescent proteins. Very small nanoparticles with a size below the Rayleigh limit (usually <30–40 nm) are hard to see by light scattering using a dark-field microscope, especially within a cellular medium. A photothermal microscope is able to detect very small nanoparticles, down to a few nanometers, but the imaging speed is usually too slow (minutes to hours) to image living cell processes. Here an absorption modulated scattering microscopy (AMSM) method is presented, which allows for the imaging of sub-10 nm Au NPs within a cellular medium. The unique physical mechanism of AMSM offers the remarkable ability to remove the light scattering background of the cellular component. In addition to having a sensitivity comparable to that of photothermal microscopy, AMSM has a much higher imaging speed, close to the video rate (20 fps), which allows for the dynamic tracking of small nanoparticles in living cells. This AMSM method might be a valuable tool for living cell imaging, using sub-10 nm Au NPs as biological probes, and thereby unlocking many new applications, such as single molecule labeling and the dynamic tracking of molecular interactions.

An absorption modulated scattering microscopy technique that allows for the imaging of sub-10 nm gold nanoparticles within a cellular scattering medium is presented.  相似文献   

17.
Templating against atomically flat materials allows creation of smooth metallic surfaces. The process of adding the backing (superstrate) to the deposited metals has proven to be the most difficult part in producing reliable, large-area, solvent-resistant substrates and has been the subject of recent research. In this paper we describe a simple and inexpensive liquid glass template-stripping (lgTS) method for the fabrication of large area ultraflat gold surfaces. Using our lgTS method, ultraflat gold surfaces with normals aligned along the <111> crystal plane and with a root-mean-square roughness of 0.275 nm (over 1 μm(2)) were created. The surfaces are fabricated on silica-based substrates which are highly solvent resistant and electrically insulating using silicate precursor solution (commonly known as "liquid glass") and concomitant mild heat treatment. We demonstrate the capabilities of such ultraflat gold surfaces by imaging nanoscale objects on top and fabricating microelectrodes as an example application. Because of the simplicity and versatility of the fabrication process, lgTS will have wide-ranging application in imaging, catalysis, electrochemistry, and surface science.  相似文献   

18.
Here, we discuss the effects that the dynamics of the hydration layer and other variables, such as the tip radius, have on the availability of imaging regimes in dynamic AFM—including multifrequency AFM. Since small amplitudes are required for high-resolution imaging, we focus on these cases. It is possible to fully immerse a sharp tip under the hydration layer and image with amplitudes similar to or smaller than the height of the hydration layer, i.e., ~1 nm. When mica or HOPG surfaces are only cleaved, molecules adhere to their surfaces, and reaching a thermodynamically stable state for imaging might take hours. During these first hours, different possibilities for imaging emerge and change, implying that these conditions must be considered and reported when imaging.  相似文献   

19.
In this paper, we describe a novel method for measuring the forward heterogeneous electron-transfer rate constant (kf) through the thiol monolayer of gold monolayer protected clusters (MPCs) in solution using scanning electrochemical microscopy (SECM). Applying the equations for mixed mass-transfer and electron-transfer processes, we develop a new formula using only the diffusion coefficient and the tip radius and use it as part of a new method for evaluating SECM approach curves. This method is applied to determine the electron-transfer rates from a series of SECM approach curves for monodisperse hexanethiol MPCs and for polydisperse hexanethiol, octanethiol, decanethiol, dodecanethiol, and 2-phenyethylthiol gold MPCs. Our results show that as the alkanethiol length increases the rate of electron transfer decreases in a manner consistent with the previously proposed tunneling mechanism for the electron transfer in MPCs. However, the effective tunneling coefficient, Beta, is found to be only 0.41 A-1 for alkanethiol passivated MPCs compared to typical values of 1.1 A-1 for alkanethiols as self-assembled monolayers on two-dimensional gold substrates. Similar SECM approach curve results for Pt and Au MPCs indicate that the electron-transfer rate is dependent mostly on the composition of the thiol layer and not on differences in the core metal.  相似文献   

20.
Magnetic composite nanospheres (MCS) were first prepared via mini‐emulsion polymerization. Subsequently, the hybrid core–shell nanospheres were used as carriers to support gold nanoparticles. The as‐prepared gold‐loading magnetic composite nanospheres (Au‐MCS) had a hydrophobic core embed with γ‐Fe3O4 and a hydrophilic shell loaded by gold nanoparticles. Both the content of γ‐Fe3O4 and the size of gold nanoparticles could be controlled in our experiments, which resulted in fabricating various materials. On one hand, the Au‐MCS could be used as a T2 contrast agent with a relaxivity coefficient of 362 mg?1 ml S?1 for magnetic resonance imaging. On the other hand, the Au‐MCS exhibited tunable optical‐absorption property over a wavelength range from 530 nm to 800 nm, which attributed to a secondary growth of gold nanoparticles. In addition, dynamic light scattering results of particle sizing and Zeta potential measurements revealed that Au‐MCS had a good stability in an aqueous solution, which would be helpful for further applications. Finally, it showed that the Au‐MCS were efficient catalysts for reductions of hydrophobic nitrobenzene and hydrophilic 4‐nitrophenol that could be reused by a magnetic separation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号