首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Aligning lipid bilayers in nanoporous anodized aluminum oxide (AAO) is a new method to help study membrane proteins by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR) spectroscopic methods. The ability to maintain hydration, sample stability, and compartmentalization over long periods of time, and to easily change solvent composition are major advantages of this new method. To date, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) has been the only phospholipid used for membrane protein studies with AAO substrates. The different properties of lipids with varying chain lengths require modified sample preparation procedures to achieve well formed bilayers within the lining of the AAO substrates. For the first time, the current study presents a simple methodology to incorporate large quantities of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), DMPC, and 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) phospholipids inside AAO substrate nanopores of varying sizes. (2)H and (31)P solid-state NMR were used to confirm the alignment of each lipid and compare the efficiency of alignment. This study is the first step in standardizing the use of AAO substrates as a tool in NMR and EPR and will be useful for future structural studies of membrane proteins. Additionally, the solid-state NMR data suggest possible applications of nanoporous aluminum oxide in future vesicle fusion studies.  相似文献   

2.
傅日强 《波谱学杂志》2009,26(4):437-456
有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在“仿真”水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展.  相似文献   

3.
Solid-state NMR experiments on mechanically aligned bilayer and magnetically aligned bicelle samples demonstrate that membrane proteins undergo rapid rotational diffusion about the normal in phospholipid bilayers. Narrow single-line resonances are observed from 15N labeled sites in the trans-membrane helix of the channel-forming domain of the protein Vpu from HIV-1 in phospholipid bilayers with their normals at angles of 0 degrees, 20 degrees, 40 degrees, and 90 degrees, and bicelles with their normals at angles of 0 degrees and 90 degrees with respect to the direction of the applied magnetic field. This could only occur if the entire polypeptide undergoes rotational diffusion about the bilayer normal. Comparisons between experimental and simulated spectra are consistent with a rotational diffusion coefficient (DR) of approximately 10(5)s-1.  相似文献   

4.
Structure and dynamics of membrane proteins can be effectively studied by oriented-sample solid-state nuclear magnetic resonance (NMR) techniques when the lipid bilayers are macroscopically aligned with respect to the main magnetic field. Magnetic alignment of the protein-containing membrane bilayer results from the negative susceptibility anisotropy of the lipid hydrocarbon interior yielding perpendicular sample alignment. At this orientation, while the uniformity of alignment represents an essential prerequisite for obtaining high-quality NMR spectra, further line narrowing is obtained by uniaxial motional averaging of the azimuthal parts of the chemical shift anisotropies and dipolar couplings. The motional averaging is brought about by uniaxial rotational diffusion of the protein molecules about the normal to the membrane surface, which is perpendicular to the magnetic field. Uniaxial averaging is efficient when the motion about the axis of alignment becomes sufficiently fast (on the timescale of the dipolar couplings and chemical shift anisotropies). Line narrowing under uniaxial rotation can be theoretically modeled using the stochastic Liouville equation. In this mini-review, we illustrate the method of uniaxial averaging for the relatively small Pf1 coat protein which exhibits excellent resolution in magnetically aligned bicelles due to its fast uniaxial diffusion and even superior resolution in large (30 nm) nanodiscs (macrodiscs) stabilized by a belt peptide. Spectra of Pf1 coat protein in polymer-stabilized macrodiscs, an alternative and more robust alignment media, are presented. We also report on preliminary spectra of a much larger protein—uniformly 15N labeled M1-M4 domain for the human acetylcholine receptor. While some spectral resolution is apparent, significantly broader linewidths emphasize the need for creating fast rotating discoidal membrane mimetics.  相似文献   

5.
Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance (13)C and (14)N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of (13)C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using (14)N experiments on bicelles is also discussed.  相似文献   

6.
A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H chemical shifts split by the (1)H-(15)N dipolar couplings in the indirect dimension and the (15)N chemical shifts in the observed dimension. The advantages of the HETCOR technique are illustrated for a static (15)N-acetyl-valine crystal sample and a (15)N-labeled helical peptide sample aligned in hydrated lipid bilayers.  相似文献   

7.
We have investigated biological functionality of immobilized enzyme structures according to the immobilizing routes and the surface properties. Horse radish peroxidase (HRP) was immobilized on various solid surfaces such as gold, SiO2, sapphire and anodized aluminum oxide (AAO) membrane via non-specific adsorption, avidin-mediated and biotin/avidin-mediated layer-by-layer (LBL) assembly. The catalytic activity as a measure of biological functionality, of the biotin-HRP immobilized by avidin-mediated LBL assembly was found to be better than that of the directly adsorbed HRP on the surfaces of gold, SiO2, sapphire and AAO due to the easy accessibility of reactants to active sites as well as the retention of three dimensional native structure of enzyme for bioactive functionality. In addition, the catalytic activity of the biotin-HRP in LBL-assembled avidin/biotin-HRP on AAO membrane was found to be highly better than that on other substrates due to the increasing amount of immobilized HRP which can be attributed to the high surface area of the substrate. SEM images show that the functional avidin/biotin-HRP enzyme structures were successfully realized by a sequential process of non-specific adsorption and LBL assembly via biotin–avidin interaction.  相似文献   

8.
'q-Titration' refers to the systematic comparison of signal intensities in solution NMR spectra of uniformly (15)N labeled membrane proteins solubilized in micelles and isotropic bicelles as a function of the molar ratios (q) of the long-chain lipids (typically DMPC) to short-chain lipids (typically DHPC). In general, as q increases, the protein resonances broaden and correspondingly have reduced intensities due to the overall slowing of protein reorientation. Since the protein backbone signals do not broaden uniformly, the differences in line widths (and intensities) enable the narrower (more intense) signals associated with mobile residues to be differentiated from the broader (less intense) signals associated with "structured" residues. For membrane proteins with between one and seven trans-membrane helices in isotropic bicelles, we have been able to find a value of q between 0.1 and 1.0 where only signals from mobile residues are observed in the spectra. The signals from the structured residues are broadened so much that they cannot be observed under standard solution NMR conditions. This q value corresponds to the ratio of DMPC:DHPC where the signals from the structured residues are "titrated out" of the spectrum. This q value is unique for each protein. In magnetically aligned bilayers (q>2.5) no signals are observed in solution NMR spectra of membrane proteins because the polypeptides are "immobilized" by their interactions with the phospholipid bilayers on the relevant NMR timescale (~10(5)Hz). No signals are observed from proteins in liposomes (only long-chain lipids) either. We show that it is feasible to obtain complementary solution NMR and solid-state NMR spectra of the same membrane protein, where signals from the mobile residues are present in the solution NMR spectra, and signals from the structured residues are present in the solid-state NMR spectra. With assigned backbone amide resonances, these data are sufficient to describe major features of the secondary structure and basic topology of the protein. Even in the absence of assignments, this information can be used to help establish optimal experimental conditions.  相似文献   

9.
10.
一种可控纳米柱阵列的研制   总被引:1,自引:0,他引:1       下载免费PDF全文
在一次阳极氧化法制备多孔氧化铝(anodized aluminum oxide,AAO)的基础上,进行了二次、三次、四次氧化制备AAO,并对多次氧化制备多孔AAO的电流变化曲线和模板表面的形貌特点等进行了比较分析.二次、三次、四次氧化制备的AAO纳米孔孔径依次增大、孔间距减小,而模板表面的纳米孔有序性分布没有明显变化.控制一次氧化AAO模板的除膜时间,~10 min即可得到孔径规则、高度有序的AAO膜.最后,利用所制备的不同孔深和孔径的AAO为模板,通过热纳米压印复制技术制备了长度和直径等性质可控的PMMA纳米柱阵列. 关键词: 纳米柱阵列 聚甲基丙烯酸甲酯 多孔氧化铝模板 多次氧化法  相似文献   

11.
The 17O-'diluted' glycine-14 sites in a phospholemman (PLM) transmembrane domain protein are characterized by solid-state 17O NMR spectroscopy. The PLM transmembrane domain is an alpha-helical tetramer unit of four 28-residue peptides and is rigidly embedded in a bilayer where each alpha-helix has an average tilt of 7.3 degrees against the membrane normal. The PLM sample investigated here consists of a high lipid/peptide molar ratio (25:1) with one glycine residue in each helix enriched to <40% (17)O; thus, this is a very dilute 17O-sample and is the most dilute 17O-membrane protein to date to be characterized by solid-state 17O NMR spectroscopy. Based on the spectral analysis of 17O magic angle spinning (MAS) at 14.1 and 18.8T, the PLM transmembrane domain protein consists of multiple crystallographic gly14 sites, suggesting that the tetramer protein is an asymmetric unit with either C2- or C1-rotational symmetry along the bilayer normal.  相似文献   

12.
RF heating of solid-state biological samples is known to be a destabilizing factor in high-field NMR experiments that shortens the sample lifetime by continuous dehydration during the high-power cross-polarization and decoupling pulses. In this work, we describe specially designed, large volume, low-E 15N-1H solid-state NMR probes developed for 600 and 900 MHz PISEMA studies of dilute membrane proteins oriented in hydrated and dielectrically lossy lipid bilayers. The probes use an orthogonal coil design in which separate resonators pursue their own aims at the respective frequencies, resulting in a simplified and more efficient matching network. Sample heating at the 1H frequency is minimized by a loop-gap resonator which produces a homogeneous magnetic field B1 with low electric field E. Within the loop-gap resonator, a multi-turn solenoid closely matching the shape of the sample serves as an efficient observe coil. We compare power dissipation in a typical lossy bilayer sample in the new low-E probe and in a previously reported 15N-1H probe which uses a double-tuned 4-turn solenoid. RF loss in the sample is measured in each probe by observing changes in the 1H 360 degrees pulse lengths. For the same values of 1H B1 field, sample heating in the new probe was found to be smaller by an order of magnitude. Applications of the low-E design to the PISEMA study of membrane proteins in their native hydrated bilayer environment are demonstrated at 600 and 900 MHz.  相似文献   

13.
Ni nanowire arrays with different diameters have now been extended to directly fabricate in porous anodic alumina oxide (AAO) templates on Ti/Si substrate by direct current (DC) electrodeposition. An aluminum film is firstly sputter-deposited on a silicon substrate coated with a 300 nm Ti film. AAO/Ti/Si substrate is synthesized by a two-step electrochemical anodization of the aluminum film on the Ti/Si substrate and then used as template to grow Ni nanowire arrays with different diameters. The coercivity and the squareness in parallel direction of Ni nanowires with about 10 nm diameters are 664 Oe and 0.90, respectively. The Ni nanowire arrays fabricated on AAO/Ti/Si substrates should lead to practical applications in ultrahigh-density magnetic storage devices because of the excellent properties.  相似文献   

14.
A method for assigning solid-state NMR spectra of membrane proteins aligned in phospholipid bicelles that makes use of isotropic chemical shift frequencies and assignments is demonstrated. The resonance assignments are based on comparisons of 15N chemical shift differences in spectra obtained from samples with their bilayer normals aligned perpendicular and parallel to the direction of the applied magnetic field.  相似文献   

15.
Sample instability during solid-state NMR experiments frequently arises due to RF heating in aligned samples of hydrated lipid bilayers. A new, simple approach for estimating sample temperature is used to show that, at 9.4 T, sample heating depends mostly on (1)H decoupling power rather than on (15)N irradiation in PISEMA experiments. Such heating for different sample preparations, including lipid composition, salt concentration and hydration level was assessed and the hydration level was found to be the primary parameter correlated with sample heating. The contribution to RF heating from the dielectric loss appears to be dominant under our experimental conditions. The heat generated by a single scan was approximately calculated from the Q values of the probe, to be a 1.7 degrees C elevation per single pulse sequence iteration under typical sample conditions. The steady-state sample temperature during PISEMA experiments can be estimated based on the method presented here, which correlates the loss factor with the temperature rise induced by the RF heating of the sample.  相似文献   

16.
A method for measuring site-specific amide hydrogen-deuterium exchange rates for membrane proteins in bilayers is reported and evaluated. This method represents an adaptation and extension of the approach of Dempsey and co-workers (Biophys. J. 70, 1777-1788 (1996)) and is based on reconstituting (15)N-labeled membrane proteins into phospholipid bilayers, followed by lyophilization and rehydration with D(2)O or H(2)O (control). Following incubation for a time t under hydrated conditions, samples are again lyophilized and then solubilized in an organic solvent system, where (1)H-(15)N HSQC spectra are recorded. Comparison of spectra from D(2)O-exposed samples to spectra from control samples yields the extent of the H-D exchange which occurred in the bilayers during time t. Measurements are site specific if specific (15)N labeling is used. The first part of this paper deals with the search for a suitable solvent system in which to solubilize complex membrane proteins in an amide "exchange-trapped" form for NMR quantitation of amide peak intensities. The second portion of the paper documents application of the overall procedure to measuring site-specific amide exchange rates in diacylglycerol kinase, a representative integral membrane protein. Both the potential usefulness and the significant limitations of the new method are documented.  相似文献   

17.
A method is presented for the calculation of REDOR dephasing for specifically labeled membrane-spanning peptides in uniformly aligned lipid bilayers under magic angle oriented sample spinning (MAOSS) conditions. Numerical simulations are performed for dephasing of (13)C signal by (15)N when the labels are placed in an alpha-helical peptide at the carbonyl of residue (i) and amide nitrogen of residue (i + 2) to show the dependency of REDOR echo intensity on the peptide tilt angle relative to the membrane normal. The approach was applied to the labeled transmembrane domain of phospholamban ([(15)N-Leu(37), (13)C-Leu(39)]PLBTM) incorporated into dimyristoylphosphatidylcholine bilayers. The dephasing observed for a random membrane dispersion showed that the peptide was alpha-helical in the region including the two labels, and dephasing in oriented membranes showed that the peptide helix was tilted by 25 degrees +/- 7 degrees relative to the bilayer normal. These results agree with those obtained by other spectroscopic methods.  相似文献   

18.
Membrane topology changes introduced by the association of biologically pertinent molecules with membranes were analyzed utilizing the (1)H-(13)C heteronuclear dipolar solid-state NMR spectroscopy technique (SAMMY) on magnetically aligned phospholipid bilayers (bicelles). The phospholipids (1)H-(13)C dipolar coupling profiles lipid motions at the headgroup, glycerol backbone, and the acyl chain region. The transmembrane segment of phospholamban, the antimicrobial peptide (KIGAKI)(3) and cholesterol were incorporated into the bicelles, respectively. The lipids (1)H-(13)C dipolar coupling profiles exhibit different shifts in the dipolar coupling contour positions upon the addition of these molecules, demonstrating a variety of interaction mechanisms exist between the biological molecules and the membranes. The membrane topology changes revealed by the SAMMY pulse sequence provide a complete screening method for analyzing how these biologically active molecules interact with the membrane.  相似文献   

19.
Cycloolefin copolymer (COC) and poly(vinyl chloride) (PVC) surfaces were patterned with nanopillars or with microbumps on which nanopillars were superimposed. The area of patterned surfaces was several square centimeters. Patterning was achieved by applying nanoporous anodized aluminum oxide (AAO) membrane as a mask in injection molding or imprinting. Nanostructures superimposed on microstructures were achieved by patterning the AAO mask with microstructures before anodization. Micro- and nanometer-sized structures could then be transferred simultaneously to polymer surfaces. Structures were characterized by SEM, AFM, and contact profilometry. The effect of different-sized structures on properties of the polymer surface was studied by contact angle measurements. Relative to the smooth surface, the increase in water contact angle on a COC surface with nanostructures superimposed on microstructures was up to 50°.  相似文献   

20.
Anodic aluminum oxide (AAO) templates with highly ordered nanoporous structure were fabricated by means of the electrochemical anodization under the constant anodic voltage and electrolyte temperature. The dependence of the ordering degree of nanopores on the point defects, dislocation configuration and grain boundary of aluminum is qualitatively analyzed. Experiment results show that the size of the ordered region of nanopores depends strongly on the point defects, dislocation cell configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号