首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract Administration of a small dose (300 ng/mouse) of photofrin II (PII) to mice, followed by 4 days of exposure to only ambient fluorescent light in animal quarters, induced Fc-receptor-mediated phagocytic and superoxide-generating capacities of peritoneal macrophages by five- and seven-fold, respectively. When these mice were kept in the dark for 4 days, no activation of macrophages was observed. These results suggest that macrophage activation is a consequence of photodynamic activation. Much higher doses (> 3000 ng/mouse) suppressed macrophage activity. However, 2 months after administration of 3000 ng PII/mouse, greatly enhanced phagocytic and superoxide-generating capacities of peritoneal macrophages were observed.
In vitro photodynamic activation of macrophages was analyzed after white or red fluorescent light exposure of mouse peritoneal cells (mixture of macrophages and B and T lymphocytes) in media containing PII. A short (10 s) white fluorescent light treatment of peritoneal cells in a medium containing 0.03 ng PII/mL produced the maximal level of phagocytic activity of macrophages. Illumination with the same total fluence of red fluorescent light requires a threefold higher concentration of PII to achieve the same extent of enhanced phagocytic activity of macrophages. Thus, photodynamic activation of macrophages with PII by white fluorescent light was more efficient than by red fluorescent light. Similarly, photodynamic killing of retinoblastoma cells was more efficient with white than red fluorescent light. The concentration of hematoporphyrin (HP) or PII required for direct photodynamic killing of retinoblastoma cells was roughly four orders of magnitude greater than that required for activation of macrophages. These results suggest that effective photodynamic therapy may be achieved with milder treatments that stimulate macrophage activity, an important component of immunopotentiation.  相似文献   

2.
The cyanine photosensitizer, lumin, is a potent macrophage activating agent: 4 days after administration of small amounts of lumin to mice (20-40 ng mouse-1), peritoneal macrophages exhibited a greatly enhanced Fc-mediated ingestion activity; higher doses (more than 3000 ng mouse-1) did not have this effect. The in vitro photodynamic activation of macrophages in mouse peritoneal cells exposed to white fluorescent light (3 J m-2 s-1) was also studied in media containing various concentrations of lumin. A short light exposure (45 J m-2) with 10 ng lumin ml-1 produced a maximum ingestion activity of macrophages. Lumin has absorption peaks at 670 and 760 nm. Therefore we designed experiments in which peritoneal cells were exposed to a red fluorescent light (emission, 660 nm; 0.5 J m-2 s-1). In a medium containing 3 ng lumin ml-1 with 7.5 J m-2 of red light, a markedly enhanced ingestion activity of macrophages was observed. The photodynamic treatment of peritoneal macrophages alone did not stimulate phagocytic activity, but the photodynamic treatment of a mixture of non-adherent (B and T) cells and macrophages resulted in a greatly enhanced ingestion activity of macrophages. Thus non-adherent cells are required for the photodynamic activation of macrophages, implying that an activating factor is generated within the non-adherent cells and transmitted to the macrophages. This hypothesis was confirmed by the observation that co-cultivation of photodynamically treated non-adherent cells with untreated macrophages resulted in a greatly enhanced ingestion capacity.  相似文献   

3.
Abstract— This study compared the ability of highly purified resting and activated DBA/2 mouse peritoneal macrophages to survive treatment with the photosensitizer benzoporphyrin derivative (BPD, verteporfin) and light. Culture of macrophages with recombinant murine interferon-γ (rIFN-γ, 100 U/mL) for 72 h imparted a phenotypic and functional activation by dramatically increasing cell surface expression of major histocompatibility complex Class II (Ia) molecules and the formation of nitric oxide. The rIFN-γ-activated macrophages were significantly (P < 0.05) more sensitive (lethal dose to cause a 50% reduction in cell survival, LD50= 14.4 ± 1.1 ng/mL) to photodynamic killing with BPD and light (10 J/cm2) than cells (LD50= 18.2 ± 2.0 ng/mL) cultured in medium alone. In contrast, macrophages treated with different concentrations of bacterial lipopolysaccharide (LPS) were as resistant or more resistant to photodynamic killing than cells cultured in medium alone. No cytotoxic effect of BPD was detected in cultures containing the drug but protected from light. Comparable amounts of BPD were taken up in vitro by unactivated and rIFN-γ-activated macrophages, as detected by flow cytometric analysis. However, cells cultured with LPS (10 μg/mL) took up more BPD than macrophages cultured in medium alone or with rIFN-γ. The DBA/2 P815 mastocytoma cells took up greater amounts of the drug and were subsequently more vulnerable to treatment with BPD and light (LD50= 6.9 ng/mL) than macrophages cultured under any condition. The explanation for the increased vulnerability of rIFN-γ-activated macrophages and the greater resistance of LPS-activated macrophages, relative to medium-cultured macrophages, to photodynamic killing with BPD is uncertain. However, the increased susceptibility of macrophages, activated with the immunomodulatory cytokine IFN-γ, to treatment with BPD and light might indicate how photodynamic therapy could interfere with the development of experimental autoimmune disease, conditions in which activated macrophages are known to be involved.  相似文献   

4.
The effects of the two photosensitizers chloroaluminum sulfonated phthalocyanine (ClAlSPc) and hematoporphyrin derivative (HpD) on the functional activities of macrophages and natural killer (NK) cells, two immunocyte populations implicated in the control of tumor development and spread, have been investigated. Murine peritoneal macrophages treated in vivo with ClAlSPc or HpD at 10 mg/kg body weight showed no impairment of Fc-mediated phagocytic capacity and only minor disturbances of in vitro tumoricidal/tumoristatic function. The NK cell activity of splenocytes obtained from photosensitizer-treated mice, assayed 24 or 48 h after i.v. injection of ClAlSPc or HpD at 10 mg/kg was unaffected compared to controls. However significant inhibition of NK activity was observed when splenocytes obtained from mice with or without subcutaneous Colo 26 tumors, treated with ClAlSPc plus laser therapy (675 nm) were used as effector cells. The results show that impairment of some anti-tumor activity can be observed in phthalocyanine treated or phthalocyanine + laser-treated animals but this relatively minor impairment may augur well for the use of systemic phthalocyanine administration in photodynamic therapy.  相似文献   

5.
Macrophages constitute a major part of natural tumor defense by their capacity to destroy selectively a broad range of tumor types upon specific activation. In the last couple of years, these cells have also been implicated as effector cells in the destruction of tumors by photodynamic therapy. In the present work, the potential role of macrophage-mediated tumor cytotoxicity after photodynamic treatment in vitro has been investigated with respect to photodynamic activation of macrophages for tumoricidal effector functions. Our data show that photodynamic treatment of highly pure murine bone-marrow-derived macrophages with the hematoporphyrin derivative Photosan-3 does not result in activation of these cells for cytotoxicity against YAC-1 tumor cells or secretion of tumor necrosis factor and nitric oxide, irrespective of co-stimulation with interferon-γ, a potent priming agent for macrophage antitumoral activity. On the contrary, treatment with higher photosensitizer doses is found to reduce markedly the viability of the macrophage effector cells. Thus, these results do not lend any support to the hypothesis of direct macrophage activation by photodynamic treatment. However, macrophages are found to be activated for tumoricidal effector functions indirectly by photodynamically killed tumor cells, in a way reminiscent of phagocytosis-inducing stimuli. It is thus suggested that recognition and phagocytosis of photodynamically destroyed tumor cells constitutes the major signal for local activation of macrophages in photodynamically treated tumor tissues, which may be crucial for final, specific eradication by the immune system of tumor cells surviving photodynamic treatment.  相似文献   

6.
Applying the fluorescent carbon dots as smart materials in anticancer therapy is of great interest. However, carbon dots for multimodal synergistic anticancer therapy, especially for the triple modality, is rarely reported. Herein, we successfully synthesized OCDs by citric acid and(1R,2S)-2-amino-1,2-diphenylethan-1-ol, which show aggregation-induced emission property and two-photon fluorescence imaging. Meanwhile, OCDs are ideal photosensitizers for photothermal therapy under 808 nm and Type Ⅰ...  相似文献   

7.
Photodynamic therapy of bile duct cancer using hematoporphyrin derivative (HPD) and laser light of 630 nm wavelength is confined to a tumouricidal tissue penetration of 4 mm, which might be doubled with laser light between 700 and 800 nm. Therefore, we investigated the photosensitising properties of a novel bacteriochlorine, tetrakis-pyridyl-tetrahydroporphyrin tosylat (THP) with high absorption at 763 nm. Two biliary cancer cell lines (BDC, GBC) were incubated with HPD or THP to assess cellular uptake kinetics, dark cytotoxicity, and photodynamic cytotoxicity (laser light exposure 1-20 J/cm2). Tumours grown from BDC cells in subcutaneous tissue of severe combined immunodeficient mice were treated with laser light of 30 J/cm2 after injection of THP. The concentrations that killed 50% of cells in the dark were 680 microg/ml of HPD, but > 6400 microg/ml of THP in BDC cells, and 220 microg/ml of HPD, but 6400 microg/ml of THP in GBC cells. Both cell lines exhibited uptake and retention of THP and photodynamic cytotoxicity (up to 86% cells killed). THP induced tumour-selective phototoxicity in the cholangiocarcinoma model. The novel bacteriochlorine THP exhibits photosensitiser properties in biliary tract cancer cells in vitro and in vivo and could achieve deep tumouricidal tissue penetration due to photoactivation at 763 nm.  相似文献   

8.
Chlorins as photosensitizers in biology and medicine   总被引:2,自引:0,他引:2  
The photodynamic therapy (PDT) of tumors involves illumination of the tumorous area following the administration of a tumor-localizing photodynamic sensitizer. Hematoporphyrin derivative (HPD) and Photofrin II (a purified form of HPD), the main sensitizers used clinically for PDT to date, are complex mixtures of porphyrins; furthermore, these preparations absorb light very poorly in the red region of the spectrum (wavelengths greater than 600 nm) where light penetration into mammalian tissues is greatest. Thus there is considerable interest in identifying new sensitizers that localize more effectively in tumors, absorb more strongly at longer wavelengths and can be prepared in high purity. Much of this interest has been directed towards chlorins (reduced porphyrins), which typically absorb strongly in the red. This review summarizes research that has been carried out on selected types of chlorins, some of which may have important applications as sensitizers for PDT.  相似文献   

9.
High-dose chemotherapy combined with autologous transplantation using bone marrow or peripheral blood-derived stem cells (PBSC) is now widely used in the treatment of hematologic malignancies as well as some solid tumors like breast cancer (BC). However, some controversial results were recently obtained in the latter case. The presence of malignant cells in the autograft has been associated with the recurrence of the disease, and purging procedures are needed to eliminate this risk. The aim of this study was to evaluate the potential of the photosensitizer 4,5-dibromorhodamine methyl ester (TH9402), a dibrominated rhodamine derivative, to eradicate multiple myeloma (MM) and BC cell lines, while sparing more than 50% of normal pluripotential blood stem cells from healthy volunteers. The human BC MCF-7 and T-47D and MM RPMI 8226 and NCI-H929 cell lines were used to optimize the photodynamic purging process. Cell concentration and the cell suspension thickness as well as the dye and light doses were varied in order to eventually treat 1-2 L of apheresis. The light source consisted of two fluorescent scanning tubes emitting green light centered about 515 nm. The cellular uptake of TH9402 was measured during the incubation and washout periods and after photodynamic treatment (PDT) using spectrofluorometric analysis. The limiting dilution assay showed that an eradication rate of more than 5 logs is obtained when using a 40 min incubation with 5-10 microM dye followed by a 90 min washout period and a light dose of 5-10 J/cm2 (2.8 mW/cm2) in all cell lines. Agitating the 2 cm thick cell suspension containing 20 x 10(6) cells/mL during PDT was essential for maximal photoinactivation. Experiments on mobilized PBSC obtained from healthy volunteers showed that even more drastic purging conditions than those found optimal for maximal eradication of the malignant cell lines were compatible with a good recovery of hematopoietic progenitors cells. The absence of significant toxicity towards normal hematopoietic stem cells, combined with the 5 logs eradication of cancer cell lines induced by this procedure suggests that TH9402 offers an excellent potential as an ex vivo photodynamic purging agent for autologous transplantation in MM and BC treatment.  相似文献   

10.
Standard in vitro analyses determining the activity of different compounds included in the chemotherapy of colon cancer are currently insufficient. New ideas, such as photodynamic therapy (PDT), may bring tangible benefits. The aim of this study was to show that the biological activity of selected free-base and manganese (III) metallated porphyrins differs in the limitation of colon cancer cell growth in vitro. White light irradiation was also hypothesized to initiate a photodynamic effect on tested porphyrins. Manganese porphyrin (>1 μM) significantly decreased the viability of the colon tumor and normal colon epithelial cells, both in light/lack of light conditions, while decreasing a free-base porphyrin after only 3 min of white light irradiation. Both porphyrins interacted with cytostatics in an antagonistic manner. The manganese porphyrin mainly induced apoptosis and necrosis in the tumor, and apoptosis in the normal cells, regardless of light exposure conditions. The free-base porphyrin conducted mainly apoptosis and autophagy. Normal and tumor cells released low levels of IL-1β and IL-10. Tumor cells released a low level of IL-6. Light conditions and porphyrins were influenced at the cytokine level. Tested manganese (III) metallated and free-base porphyrins differ in their activity against human colon cancer cells. The first showed no photodynamic, but a toxic activity, whereas the second expressed high photodynamic action. White light use may induce a photodynamic effect associated with porphyrins.  相似文献   

11.
Abstract— We tested water-soluble sulfonated phthalocyanine and three metal chelate derivatives for their tumoricidal effect on the EMT-6 mammary tumor in mice exposed to red light. The metal-free sulfophthalocyanine had little effect, whereas the aluminum complex and the lower sulfonated fraction of the gallium complex exhibited tumoricidal activity similar to hematoporphyrin-based photosensitizer (Photofrin II). The higher sulfonated fractions of the gallium complex were less active as compared to the lower sulfonated fraction. The cerium complex was the most active sensitizer in terms of dye and light doses required to induce tumor necrosis and cure but also showed the highest phototoxicity towards healthy skin. These results suggest that sulfonated phthalocyanines will offer a new alternative in photodynamic therapy of light-accessible neoplasms.  相似文献   

12.
The goal of this study was to assess the interest of photodynamic diagnosis (PDD) for laparoscopic detection of peritoneal micro metastasis in ovarian carcinoma. Using an experimental animal model, intraperitoneal injection of aminolevulinic acid (ALA) and hexylester of aminolevulinic acid (He-ALA) were compared in order to improve laparoscopic detection of ovarian peritoneal carcinomatosis. Twenty-one 344 Fischer female rats received an intra peritoneal injection of 106 NuTu-19 cells. At day 22, carcinomatosis with micro peritoneal metastasis was obtained. Rats were randomized in three groups concerning intra peritoneal injection before laparoscopic staging: 5-ALA hydrochloride, HE-ALA and sterile water. Using D Light system, laparoscopic peritoneal exploration was performed with white light (WL) first and then with blue light (BL). The main objective was to assess feasibility and sensibility of laparoscopic PDD for nonvisible peritoneal micro metastasis of ovarian cancer. The main parameter was the confirmation of neoplasic status of fluorescent foci by histology. Concerning PDD after intraperitoneal injection of 5-ALA, mean values of lesions seen is higher than without fluorescence (32 vs 20.7; P = 0.01). Using He-ALA, mean values of detected lesions is higher than without fluorescence (42.9 vs 33.6; P < 0.001). Neoplasic status of fluorescent foci was confirmed in 92.8% of cases (39/42). Using 5-ALA, fluorescence of cancerous tissue is significantly higher than that of normal tissue in all the rats (ratio 1.17) (P = 0.01). With He-ALA, intensity of fluorescence is significantly higher in cancerous tissue compared to normal tissue, irrespective of the rat studied (ratio 1.22; P < 0.001).  相似文献   

13.
Endogenous protoporphyurin IX (PpIX) synthesis after δ-aminolaevulinic acid (ALA) administration occurs in cancer cells in vivo; PpIX, which has a short half-life, may thus constitute a good alternative to haematoporphyrin derivative (HPD) (or Photofrin). This study assesses the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA, and compares ALA-induced toxicity and phototoxicity with the photodynamic therapy (PDT) effects of HPD on this cell line.

ALA induced a dose-dependent dark toxicity, with 79% and 66% cell survival for 50 and 100 μg ml−1 ALA respectively after 3 h incubation; the same treatment, followed by laser irradiation (λ = 632 nm, 25 J cm−2), induced a dose-dependent phototoxicity, with 54% and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3 h delay before light exposure was found to be optimal to reach a maximum phototoxicity.

HPD induced a slight dose-dependent toxicity in HepG2 cells and a dose- and time-dependent phototoxicity ten times greater than that of ALA-PpIX PDT. After 3 h incubation of 2.5 and 5 μg ml−1 HPD, followed by laser irradiation (λ = 632 nm, 25 J cm−2), cell survival was 59% and 24% respectively at 24 h.

Photoproducts induced by light irradiation of porphyrins absorb light in the red spectral region at longer wavelengths than the original porphyrins. The possible enhancement of PDT effects after HepG2 cell incubation with ALA or HPD was investigated by irradiating cells successively with red light (λ = 632 nm) and light (λ = 650 nm). The total fluence was kept constant at 25 J cm−2. For both HPD and ALA-PpIX PDT, phototoxicity was lower when cells were irradiated for increased periods with λ = 650 nm light than with λ = 632 nm light alone. This suggests that any photoproducts involved either have a short life or are poorly photoreactive.

Not all cell lines can synthesize PpIX after ALA incubation. HepG2 cells, which can synthesize enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX PDT. In addition, ALA-PpIX PDT may represent a new, specific treatment for hepatocarcinomas.  相似文献   


14.
The accuracy, repeatability, and reproducibility characteristics of a liquid chromatographic method for the determination of ochratoxin A (OTA) in white wine, red wine, and beer were established in a collaborative study involving 18 laboratories in 10 countries. Blind duplicates of blank, spiked, and naturally contaminated materials at levels ranging from < or =0.01 to 3.00 ng/mL were analyzed. Wine and beer samples were diluted with a solution containing polyethylene glycol and sodium hydrogen carbonate, and the diluted samples were filtered and cleaned up on an immunoaffinity column. OTA was eluted with methanol and quantified by reversed-phase liquid chromatography with fluorometric detection. Average recoveries from white wine, red wine, and beer ranged from 88.2 to 105.4% (at spiking levels ranging from 0.1 to 2.0 ng/mL), from 84.3 to 93.1% (at spiking levels ranging from 0.2 to 3.0 ng/mL), and from 87.0 to 95.0% (at spiking levels ranging from 0.2 to 1.5 ng/mL), respectively. Relative standard deviations for within-laboratory repeatability (RSDr) ranged from 6.6 to 10.8% for white wine, from 6.5 to 10.8% for red wine, and from 4.7 to 16.5% for beer. Relative standard deviations for between-laboratories reproducibility (RSDR) ranged from 13.1 to 15.9% for white wine, from 11.9 to 13.6% for red wine, and from 15.2 to 26.1% for beer. HORRAT values were < or =0.4 for the 3 matrixes.  相似文献   

15.
After transfusion, the presence of contaminating white blood cells (WBC) in blood components may result in either deleterious or positive immunological responses. We have previously reported that photodynamic treatment (PDT) with meso-substituted mono-phenyl-tri-( N -methyl-4-pyridyl)-porphyrin (Tri-P(4)) and red light can inactivate pathogens in red blood cell (RBC) products. The present study explored the effect of PDT on contaminating WBC in RBC products with varying hematocrit (Hct). After PDT, we evaluated adaptive and innate immunomodulation through allogeneic and mitogenic stimulation. PDT resulted in decreased T-cell proliferation which was more pronounced with lower Hct. Dark effect of porphyrin Tri-P(4) was remarkable on antigen-presenting cells affecting expression of co-stimulatory molecules CD80/CD86. Finally, cytokine profile after PDT revealed a mixed Th1/Th2 type response while surface antigen expression supported the development of alternatively activated macrophages (AAMφ or Type 2 macrophages) instead of dendritic cells. In conclusion, PDT with Tri-P(4) altered proliferation, allo-stimulation, cell surface antigen expression and cytokine profiles of the cells. These results suggest that PDT may be potentially useful in preventing transfusion-associated graft- versus -host disease and alloimmunization. It seems worthwhile to further explore PDT-induced immunomodulation to optimize conditions which may result in allo-tolerance by AAMφ.  相似文献   

16.
Studies were carried out on 5-aminolevulinic acid (ALA)-induced protoporphyrin (PpIX) synthesis in mice peritoneal macrophages and two human oral squamous cell carcinoma (OSCC) cell lines NT8e and 4451. Cells were treated with 200 microg/ml ALA for 15 h and PpIX accumulation was monitored by spectrofluorometry and phototoxicity to red light (630+/-20 nm) was measured by MTT assay. PpIX accumulation was higher in macrophages as compared to OSCC cells under both normal serum concentration (10%) and conditions of serum depletion. The results on phototoxicity measurements correlated well with the levels of PpIX accumulation in both macrophages and cancer cells. While red light caused 20% phototoxicity in macrophages, no phototoxicity was seen in 4451 cells at 10% serum. Decrease in serum concentration to 5% and 1% led to higher phototoxicity corresponding to 40% and 70% in macrophages and 10% and 15% in 4451 cells. Similar results were obtained in NT8e cell line. Propidium iodide staining followed by fluorescence microscopic observations on photodynamically treated co-culture of murine or human macrophages and cancer cells showed selective damage to macrophages. These results suggest that in OSCC, macrophages would contribute more to tumor PpIX level than tumor cells themselves and PDT may lead to selective killing of macrophages at the site of treatment. Since macrophages are responsible for production and secretion of various tumor growth mediators, the effect of selective macrophage killing on the outcome of PDT would be significant.  相似文献   

17.
Tumor-associated macrophages (TAM) are key regulators of the link between inflammation and cancer, and the interplay between TAM and tumor cells represents a promising target of future therapeutic approaches. We investigated the effect of gallic acid (GA) and caffeic acid (CA) as strong antioxidant and anti-inflammatory agents on tumor growth, angiogenesis, macrophage polarization, and oxidative stress on the angiogenic model caused by the intraperitoneal (ip) inoculation of Ehrlich ascites tumor (EAT) cells (2.5 × 106) in Swiss albino mouse. Treatment with GA or CA at a dose of 40 mg/kg and 80 mg/kg ip was started in exponential tumor growth phase on days 5, 7, 9, and 11. On day 13, the ascites volume and the total number and differential count of the cells present in the peritoneal cavity, the functional activity of macrophages, and the antioxidant and anti-angiogenic parameters were determined. The results show that phenolic acids inhibit the processes of angiogenesis and tumor growth, leading to the increased survival of EAT-bearing mice, through the protection of the tumoricidal efficacy of M1 macrophages and inhibition of proangiogenic factors, particularly VEGF, metalloproteinases -2 and -9, and cyclooxygenase-2 activity.  相似文献   

18.
C57BL mouse peritoneal macrophages sensitized with cytochrome c (cyt. c) in complete Freund adjuvant (CFA) in vivo were able to capture, internalize and reexpress horse cyt.c on their surface. The major portion of cyt.c captured came out of macrophages in 1 to 3 h, with molecular weight unmodified. Cyt.c could be partly cleaved into two fragments, with molecular masses of about 2-2.5 and 10 kD by external non-serine proteases. The dynamics of macrophage interactions with cyt.c coupled to fluorescent latex beads was also studied. Macrophages were shown not to present cyt.c in the immune response in vitro, but rather to modulate the response level. The activating substance was secreted into the culture fluid, while suppressive activity was mediated by the cells.  相似文献   

19.
Photosensitizers that can target and accumulate in mitochondria are expected to achieve good therapeutic effects in photodynamic therapy,as mitochondria are the energy generation factory in cells.Herein,we designed and synthesized a novel mitochondrion-targeting photosensitizer TPC-Py with aggregation-induced emission characteristics for image-guided photodynamic therapy.TPC-Py possessed an efficient production of 1O2,with a quantum yield of 11.65%,upon mild white light irradiation(6 mW/cm2).TPC-Py exhibited good biocompatibility under dark condition,but showed remarkable cytotoxicity towards human cervical carcinoma(HeLa)cells with a half maximal inhibitory concentration(IC50)of 3.2μmol/L when exposed to white light irradiation(14.4 J/cm2).In addition,the Stokes shift of TPC-Py was as high as 150 nm,so that it could prevent self-absorption and increase the signal-to-noise ratio of fluorescence imaging.The excellent performance of TPC-Py makes it a promising candidate in imaging-guided clinical PDT for cancer in the near future.  相似文献   

20.
Hematoporphyrin derivative (HPD), a sensitizer used in photodynamic therapy (PDT) of malignancies, is progressively destroyed during the treatment. Prior studies suggested that upon PDT the photobleaching of HPD in tumor tissues is largely mediated by self-sensitized singlet oxygen. However, little is known about the role of other reactive oxygen species (ROS). The main aim of this work was to clarify the significance of H2O2, superoxide (O2.(-)) and hydroxyl (OH.) radicals in bleaching of HPD in tumor cells subjected to PDT. Experiments were performed on Ehrlich ascites carcinoma (EAC) cells, which were loaded with HPD in PBS and then irradiated with red light at 630 nm in the same buffer. Studies showed that photosensitization of EAC cells by HPD led to the formation of significant amounts of H2O2, O2.(-) and OH., and that these ROS could be involved in the photobleaching of HPD during PDT. In fact, we found that addition of catalase (CAT, a scavenger H2O2), Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and Tiron (scavengers of O2.(-)), Na-benzoate, mannitol and deferoxamine (scavengers of OH.) caused a substantial decrease in the rate of HPD photobleaching in EAC cells. In these cells, the inhibitory effects of Na-benzoate, mannitol and deferoxamine on the photodegradation of HPD correlated well with suppression of the OH. generation, a highly active oxidizer. In EAC cells, the glutathione redox cycle and CAT (scavengers of H2O2) as well as Cu/Zn-SOD was found to suppress the photoinduced degradation of HPD. It was also established that HPD can directly scavenge H2O2 and oxygen free radicals; in a phosphate buffer its second-order rate constants were measured as 5.51+/-0.32 x 10(3)M(-1)s(-1) (for the reaction with O2.(-)), 5.08+/-0.31 x 10(4)M(-1)s(-1) (for H2O2), and 3.44+/-0.08 x 10(10)M(-1)s(-1) (for OH.). Thus, our data suggest that OH. could be one of the main oxidants mediating the photobleaching behavior of HPD in malignancies. Studies showed that photoexcited moieties of HPD can oxidize cell proteins with the formation of protein peroxides (PPO), which currently are regarded as a new form of ROS. Model experiments suggest that PPO could also participate in bleaching of HPD in tumors treated with PDT. It was found that HPD may destroy in tumor cells after cessation of photoirradiation and that this event is largely mediated by the presence of H2O2, a precursor of OH(.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号