首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.  相似文献   

2.
Assignments of the protolytic speciation at the calcium hydroxyl surface sites of synthetic fluorapatite and the chemical interactions between fluorapatite-maghemite and fluorapatite-Fe2+ ions have been studied by means of 1H and 31P single-pulse and 31P CP MAS NMR. Three possible forms of calcium hydroxyl surface sites have been suggested and assigned to [triple bond] CaOH, [triple bond]Ca(OH)2-, and [triple bond]CaOH2+, and their mutual ratios were found to vary as a function of pH. Due to their paramagnetic properties, iron species and Fe2+ ions adsorbed at the fluorapatite surface display a broad spinning sideband manifold in the single-pulse 31P MAS NMR spectra. The resonance lines in the 31P CP MAS NMR spectra originating from the bulk phosphate groups PO4(3-) and phosphorus surface sites [triple bond]POx and [triple bond]POxH decrease with increasing Fe2+ ion adsorption. When iron species originating from maghemite are adsorbed at the fluorapatite surface, no 31P NMR signal is detected, which supports the hypothesis that surface reactions occur between the phosphorus surface sites of fluorapatite and iron species.  相似文献   

3.
The Phlebobranch ascidian Perophora annectens surprisingly exhibited a biological Fe/V ratio of approximately 15:1 on multichannel X-ray fluorescence analysis of two independent collections of organisms. Iron K-edge X-ray absorption spectroscopy (XAS) indicated a single form of iron. The XAS K-edge of the first collection of blood cells was shifted approximately +1 eV relative to that of the second, indicating redox activity with average iron oxidation states of 2.67+ and 2.60+. The first-derivative iron XAS K-edge features at 7120.5, 7124, and 7128 eV resembled the XAS of magnetite but not of ferritin or of dissolved Fe(II) or Fe(III). Pseudo-Voigt fits to blood-cell iron K-edge XAS spectra yielded 12.4 integrated units of preedge intensity, indicating a noncentrosymmetric environment. The non-phase-corrected extended X-ray absorption fine structure (EXAFS) Fourier transform spectrum showed a first-shell O/N peak at 1.55 angstroms and an intense Fe-Fe feature at 2.65 angstroms. Fits to the EXAFS required a split first shell with two O at 1.93 angstroms and three O at 2.07 angstroms, consistent with terminal and bridging alkoxide ligands, respectively. More distant shells included three C at 2.87 angstroms, two Fe at 3.08 angstroms, three O at 3.29 angstroms, and one Fe at 3.8 angstroms. Structural models consistent with these findings include a [Fe4(OR)13](2-/3-) broken-edged Fe4O5 cuboid or a [Fe4(OR)14](3-/4-) "Jacob's ladder" with three edge-fused Fe2(OR)2 rhombs. Either of these models represents an entirely new structural motif for biological iron. Vanadium domination of blood-cell metals cannot be a defining trait of Phlebobranch tunicates so long as P. annectens is included among them.  相似文献   

4.
The extraction of gallium(III) with newly prepared 5-alkyloxymethyl-8-quinolinol derivatives with alkyl substituent at the 2-position in 8-quinolinol moiety has been studied. The Ga(III)-5-octyloxymethyl-8-quinolinol (HO(8)Q), Ga(III)-2-methyl-5-octyloxymethyl-8-quinolinol (HMO(8)Q), Ga(III)-2-methyl-5-hexyloxymethyl-8-quinolinol (HM-O(6)Q), and Ga(HI)-2-n-butyl-5-hexyloxymethyl-8-quinolinol (HNBO(6)Q) complexes extracted in heptane from a perchloric acid medium were Ga(O(8)Q)(3), Ga(OH)(H(2)O)(MO(8)Q)(2), Ga(OH)(H(2)O)(MO(6)Q)(2) and Ga(OH)H(2)O)(NBO(6)Q)(2), respectively. The 2-tert-butyl-5-hexyloxymethyl-8-quinolinol did not exhibit any reactivity toward gallium(III). The extraction constants for Ga(O(8)Q)(3) (K(ex) = [Ga(O(8)Q)(3)](org) [H(+)](3)/[Ga(3+)][HO(8)Q](org)(3)), Ga(OH)(H(2)O)(MO(8)Q)(2) (K(ex) = [Ga(OH) (H(2)O)(MO(8)Q)(2)](org) [H(+)](3)/[Ga(3+)][HMO(8)Q](org)(2)), Ga(OH)(H(2)O)(2)(MO(6)Q)(2) and Ga(OH)(H(2)O)(NBO(6)Q)(2), which were extracted in heptane from an acidic solution, are 10(3.21 +/- 0.12), 10(-4.24 +/- 0.16), 10(-3.84 +/- 0.16) and 10(-4.07 +/- 0.07), respectively at I = 0.1 M and 25 degrees C. HNBO(6)Q exhibited very high selectivity toward gallium(III) in the presence of aluminum(III). Even in the presence of a 100 fold excess of aluminum(III) to gallium(III) (1.43 x 10(-5) M), gallium(III) was completely extracted and the distribution ratio of aluminum(III) was found to be less than 2.0 x 10(-3).  相似文献   

5.
Solutions 0.03-0.05 M in gallium(I) can be generated by treatment of the "mixed" halide Ga(I)Ga(III)Cl(4) with cold water under argon and then removing the precipitated metallic gallium and Ga(OH)(3) by centrifugation. Ga(I) is lost from such preparations with a half-life of about 3 h at 0 degrees C. These solutions, which may be handled by conventional techniques, readily reduce I(3)(-), IrCl(6)(2)(-), Fe(bipy)(3)(3+), Fe(NCS)(2+), aquacob(III)alamin, and a group of ring-substituted derivatives of Ru(NH(3))(5)(py)(3+) but are inert to (NH(3))(5)CoCl(2+) and (NH(3))(5)CoBr(2+). All reactions give Ga(III). Reduction of HCrO(4)(-) in 2-ethyl-2-hydroxybutanoate buffers (pH 3.6) yields a Cr(IV) chelate of the buffering anion but forms Cr(III) when carried out in 0.01 M H(+). Reactions of le(-) oxidants proceed via successive single changes with the conversion Ga(II) --> Ga(III) much more rapid than Ga(I) --> Ga(II). Only for the reactions of I(3)(-) and Fe(NCS)(2+) is there evidence for redox bridging.  相似文献   

6.
Ni(II) sorption onto iron oxides and in particular hydrous ferric oxide (HFO) is among the important processes impacting its distribution, mobility, and bioavailability in environment. To develop mechanistic models for Ni, extended X-ray absorption fine structure (EXAFS) analysis has been conducted on Ni(II) sorbed to HFO. Coprecipitation revealed the formation of the metastable alpha-Ni(OH)(2) at a Ni(II) loading of 3.5 x 10(-3) molg(-1). On the other hand, Ni(II) formed inner-sphere mononuclear bidentate complexes along edges of FeO(6) octahedra when sorbed to HFO surfaces with Ni-O distances of 2.05-2.07 A and Ni-Fe distances of 3.07-3.11 A. This surface complex was observed by EXAFS study over 2.8 x 10(-3) to 10(-1) ionic strength, pH from 6 to 7, a Ni(II) loading of 8 x 10(-4) to 8.1 x 10(-3) molg(-1) HFO, and reaction times from 4 hours to 8 months. The short- and long-range structure analyses suggest that the presence of Ni(II) inhibited transformation of the amorphous iron oxide into a more crystalline form. However, Ni(2+) was not observed to substitute for Fe(3+) in the oxide structure. This study systematically addresses Ni(II) adsorption mechanisms to amorphous iron oxide. The experimentally defined surface complexes can be used to constrain surface complexation modeling for improved prediction of metal distribution at the iron oxide/aqueous interface.  相似文献   

7.
8.
Summary The sorption of microamounts of gallium(III) on Fe(OH)3 and Fe2O3 precipitates was studied by using67Ga as radioactive indicator. The dependence of sorption of microamounts of gallium(III) on pH, sorbent concentration, and duration of the contact between gallium-(III) and Fe(OH)3 precipitate, was established. In the presence of sodium citrate the sorption of microamounts of gallium (III) on Fe2O3 markedly decreased. Iron(III) hydroxide and Fe2O3 precipitates are suitable collectors for the preconcentration of gallium (III) traces in solution.
Zusammenfassung Die Adsorption von Mikromengen Ga(III) an Niederschlägen von Fe(OH)3 und Fe2O3 wurde mit Hilfe von67Ga als radioaktivem Indikator untersucht. Die Abhängigkeit der Adsorption vom pH, von der Konzentration des Sorptionsmittels und von der Dauer des Kontakts zwischen Ga(III) und Fe(0H)3 wurde festgestellt. In Gegenwart von Na-Citrat wird die Sorption an Fe2O3 merklich geringer. Eisen (III)hydroxid- und Fe2O3-Niederschläge eignen sich als Kollektoren zur Anreicherung von Ga(III)-Spuren in einer Lösung.
  相似文献   

9.
Controlled potential coulometric (CPC) studies were carried out for developing a method to determine gallium at milligram levels, in the mixed supporting electrolyte medium (4 M NaClO4 + 0.5 M NaSCN), employing stirring mercury as a working electrode. Investigations for optimization of working electrode potentials, quantity of charge, level of background current and electrolysis time for achieving quantitative reduction of Ga(III) to Ga and its oxidation back to Ga(III), were undertaken. Effect of gallium content and interference of zinc in of gallium determination were also studied. The developed methodology was employed for the determination of gallium in pure Ga as well as in synthetic U + Ga mixture solutions. Accuracy and precision values of better than 0.5% were obtained at 1-2 mg levels.  相似文献   

10.
The nature of crystallographic reactive sites on the lepidocrocite (gammaFeOOH) surface has been determined by atomic force microscopy (AFM) and extended X-ray absorption fine structure (EXAFS) spectroscopy and compared to the surface bonding properties of goethite. To this end, the specific surface areas of lepidocrocite particles, and of their crystal faces, were calculated from the size and shape of individual particles determined by AFM, and the structure of Cd surface complexes was determined from Cd-Fe EXAFS distances. The combined results show that Cd forms solely mononuclear surface complexes, even at 100% surface coverage, and that hydrated Cd octahedra sorb on basal {010} and lateral {hk0}, {h0l} faces of lepidocrocite platelets by sharing edges with surface Fe octahedra. The absence, or scarcity, of corner-sharing linkage between Fe and Cd octahedra on the surface of lepidocrocite is in contrast to goethite (alphaFeOOH), where this type of complex is predominant. The explanation for the observed difference of Cd sorption mechanism on these two polymorphs lies not in the shape and relative surface area of their crystallographic faces, but in their different bulk structures and, specifically, in the stacking mode of anion layers (O(2-), OH(-)) which is hexagonal in alphaFeOOH and cubic in gammaFeOOH. This study demonstrates that the stacking mode of anions in the sorbent solid is a key factor in determining the structure of surface complexes on mineral surfaces. Copyright 2000 Academic Press.  相似文献   

11.
The study of mercury sorption products in model systems using appropriate in situ molecular-scale probes can provide detailed information on the modes of sorption at mineral/water interfaces. Such studies are essential for assessing the influence of sorption processes on the transport of Hg in contaminated natural systems. Macroscopic uptake of Hg(II) on goethite (alpha-FeOOH), gamma-alumina (gamma-Al(2)O(3)), and bayerite (beta-Al(OH)(3)) as a function of pH has been combined with Hg L(III)-edge EXAFS spectroscopy, FTIR spectroscopy, and bond valence analysis of possible sorption products to provide this type of information. Macroscopic uptake measurements show that Hg(II) sorbs strongly to fine-grained powders of synthetic goethite (Hg sorption density Gamma=0.39-0.42 micromol/m(2)) and bayerite (Gamma=0.39-0.44 micromol/m(2)), while sorbing more weakly to gamma-alumina (Gamma=0.04-0.13 micromol/m(2)). EXAFS spectroscopy on the sorption samples shows that the dominant mode of Hg sorption on these phases is as monodentate and bidentate inner-sphere complexes. The mode of Hg(II) sorption to goethite was similar over the pH range 4.3-7.4, as were those of Hg(II) sorption to bayerite over the pH range 5.1-7.9. Conversion of the gamma-Al(2)O(3) sorbent to a bayerite-like phase in addition to the apparent reduction of Hg(II) to Hg(I), possibly by photoreduction during EXAFS data collection, resulted in enhanced Hg uptake from pH 5.2-7.8 and changes in the modes of sorption that correlate with the formation of the bayerite-like phase. Bond valence calculations are consistent with the sorption modes proposed from EXAFS analysis. EXAFS analysis of Hg(II) sorption products on a natural Fe oxyhydroxide precipitate and Al/Si-bearing flocculent material showed sorption products and modes of surface attachment similar to those for the model substrates, indicating that the model substrates are useful surrogates for the natural sediments.  相似文献   

12.
Surface speciation of As(III) and As(V) in relation to charge distribution   总被引:1,自引:0,他引:1  
The adsorption of As(III) and As(V) on goethite has been studied as a function of pH and loading. The data can be successfully described with the charge distribution (CD) model (extended Stern layer option) using realistic species observed by EXAFS. The CD values have been derived theoretically. Therefore, the Brown bond valence approach has been applied to MO/DFT optimized geometries of a series of hydrated complexes of As(III) and As(V) with Fe(III) (hydr)oxide. The calculated ionic CD values have been corrected for the effect of dipole orientation of interfacial water, resulting in overall interfacial CD coefficients that can be used to describe the surface speciation as a function of pH and loading. For As(III), the main surface species is a bidentate complex and a minor contribution of a monodentate species is found, which is in agreement with EXAFS. The CD values have also been fitted. Such an analysis of the adsorption data resulted in the same surface species. The fitted CD values for the bidentate complex points to the presence of strong AsO bonds with the surface and a weaker AsOH bond with the free OH ligand. This agrees quantitatively with the MO/DFT optimized geometry. Interpretation of free fitted CD values for As(V) binding suggests that the main surface species is a non-protonated bidentate complex (B) with a contribution of a singly protonated surface complex (MH) at sub-neutral pH and high loading. In addition, a protonated bidentate surface complex (BH) may be present. The same species are found if the theoretical CD values are used in the data analysis. The pH dependency of surface speciation is strongly influenced by the charge attribution of adsorbed species to the electrostatic surface plane while the effect of loading is primarily controlled by the amount of charge attributed to the 1-plane, illustrating the different action of the CD value. The MO/DFT geometry optimizations furthermore suggest that for As(V) the B, MH and BH surface complexes may have very similar AsFe distances which may complicate the interpretation of EXAFS data.  相似文献   

13.
The products of aqueous Zn(II) sorption on high-surface-area alumina powders (Linde-A) have been studied using XAFS spectroscopy as a function of Zn(II) sorption density (Gamma=0.2 to 3.3 μmol/m(2)) at pH values of 7.0 to 8.2. Over equilibration times of 15-111 h, we find that at low sorption densities (Gamma=0.2-1.1 μmol/m(2)) Zn(II) forms predominantly inner-sphere bidentate surface complexes with AlO(6) polyhedra, whereas at higher sorption densities (Gamma=1.5 to 3.5 μmol/m(2)), we find evidence for the formation of a mixed-metal Zn(II)-Al(III) hydroxide coprecipitate with a hydrotalcite-type local structure. These conclusions are based on an analysis of first- and second-neighbor interatomic distances derived from EXAFS spectra collected under ambient conditions on wet samples. At low sorption densities the sorption mechanism involves a transformation from six-coordinated Zn-hexaaquo solution complexes (with an average Zn-O distance of 2.07 ?) to four-coordinated surface complexes (with an average Zn-O distance of 1.97 ?) as described by the reaction identical withAl(OH(a))(OH(b))+Zn (H(2)O)(6)(2+)--> identical withAl(OH(a)') (OH(b)')Zn(OH(c)')(OH(d)'+4H(2)O+zH(+), where identical withAl(OH(a))(OH(b)) represents edge-sharing sites of Al(O,OH,OH(2))(6) octahedra to which Zn(O,OH,OH(2))(4) bonds in a bidentate fashion. The proton release consistent with this reaction (z=a-a'+b-b'+4-c'-d'), and with bond valence analysis falls in the range of 0 to 2 H(+)/Zn(II) when hydrolysis of the adsorbed Zn(II) complex is neglected. This interpretation suggests that proton release is likely a strong function of the coordination chemistry of the surface hydroxyl groups. At higher sorption densities (1.5 to 3.5 μmol/m(2)), a high-amplitude, second-shell feature in the Fourier transform of the EXAFS spectra indicates the formation of a three-dimensional mixed-metal coprecipitate, with a hydrotalcite-like local structure. Nitrate anions presumably satisfy the positive layer charge of the Al(III)-Zn(II) hydroxide layers in which the Zn/Al ratio falls in the range of 1 : 1 to 2 : 1. Our results for the higher Gamma-value sorption samples suggest that Zn-hydrotalcite-like phases may be a significant sink for Zn(II) in natural or catalytic systems containing soluble alumina compounds. Copyright 2000 Academic Press.  相似文献   

14.
The acid/base surface properties of carbonate free fluorapatite (Ca5(PO4)3F) have been characterised using high precision potentiometric titrations and surface complex modelling. Synthetic carbonate free fluorapatite was prepared and characterised by SEM, XRD, FT-IR and FT-Raman. The specific surface area was determined to be 17.7+/-1.2 m2 g(-1) with BET (N2 adsorption). The titrations were performed at 25+/-0.2 degrees C, within the pH range 5.7-10.8, in 0.10 and 0.50 mol dm(-3) NaNO3 ionic media. Experimental data were interpreted using the constant capacitance model and the software FITEQL 4.0. The surface equilibria: [triple bond]S1OH <==> [triple bond]S1O- + H+ lg betaS(-110) (int), [triple bond]S2OH <==> [triple bond]S2O- + H+ lg betaS(-101) (int) well describes the surface characteristics of synthetic fluorapatite. The equilibrium constants obtained were: lg betaS(-110) (int) = -6.33+/-0.05 and lg betaS(-101) (int) = -8.82+/-0.06 at I = 0.10 mol dm(-3). At the ionic strength 0.50 mol dm(-3), the equilibrium constants were slightly shifted to: lg betaS(-110) (int) = -6.43+/-0.05 and lg betaS(-101) (int) = -8.93+/-0.06. The number of active surface sites, N(s), was calculated from titration data and was found to be 2.95 and 2.34 sites nm(-2) for the ionic strengths 0.10 and 0.50 mol dm(-3), respectively. pH(PZC) or the IEP was found to be 5.7 from Z-potential measurements.  相似文献   

15.
The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40  in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60  and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.  相似文献   

16.
许金 《化学学报》1989,47(4):367-371
研究了水溶液中三价铁与2,3-二羟基苯甲酸络合反应的机理与动力学. 测定并计算了络合作用的反应速度常数. 活性 和活性焓随氢离子浓度增加而降低, 指明了FeCH2(3+)的缔合机理和FeOH(2+)与Fe2(OH)2(4+)的解离活化机理, 反应速率方程表明氢离子浓度的依赖关系对Fe(III)络合作用是典型的. 但是在[Fe(III)]的二级反应动力学则有一个反常贡献.  相似文献   

17.
The lipoxygenase mimic [Fe(III)(PY5)(OH)](CF3SO3)2 is synthesized from the reaction of [Fe(II)(PY5)(MeCN)](CF3SO3)2 with iodosobenzene, with low-temperature studies suggesting the possible intermediacy of an Fe(IV) oxo species. The Fe(III)-OH complex is isolated and identified by a combination of solution and solid-state methods, including EPR and IR spectroscopy. [Fe(III)(PY5)(OH)](2+) reacts with weak X-H bonds in a manner consistent with hydrogen-atom abstraction. The composition of this complex allows meaningful comparisons to be made with previously reported Mn(III)-OH and Fe(III)-OMe lipoxygenase mimics. The bond dissociation energy (BDE) of the O-H bond formed upon reduction to [Fe(II)(PY5)(H2O)]2+ is estimated to be 80 kcal mol(-1), 2 kcal mol(-1) lower than that in the structurally analogous [Mn(II)(PY5)(H2O)]2+ complex, supporting the generally accepted idea that Mn(III) is the thermodynamically superior oxidant at parity of coordination sphere. The identity of the metal has a large influence on the entropy of activation for the reaction with 9,10-dihydroanthracene; [Mn(III)(PY5)(OH)]2+ has a 10 eu more negative DeltaS++ value than either [Fe(III)(PY5)(OH)]2+ or [Fe(III)(PY5)(OMe)]2+, presumably because of the increased structural reorganization that occurs upon reduction to [Mn(II)(PY5)(H2O)]2+. The greater enthalpic driving force for the reduction of Mn(III) correlates with [Mn(III)(PY5)(OH)]2+ reacting more quickly than [Fe(III)(PY5)(OH)]2+. Curiously, [Fe(III)(PY5)(OMe)]2+ reacts with substrates only about twice as fast as [Fe(III)(PY5)(OH)]2+, despite a 4 kcal mol(-1) greater enthalpic driving force for the methoxide complex.  相似文献   

18.
The equilibria and kinetics of the binding of gallium(III) to 4-(N),10-(N)-bis[2-(3-hydroxo-2-oxo-2-H-pyridine-1-y1)acetamido]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane (L) were investigated in acidic medium at ionic strength 1 M (NaClO4). Spectrophotometric titrations in the UV region revealed that L is able to bind Ga3+ also at high H+ concentration. The kinetic (stopped-flow) experiments are interpreted on the basis of three parallel reaction paths (i) M3+ + H2L2+ = M(H2L)5+ where M(H2L)5+ is in a steady state, (ii) M(OH)2+ + H2L2+ = M(HL)4+ + H2O and (iii) M(OH)2+ + HL+ = ML3+ + H2O. The first-order rate constants for conversion of the outer-sphere into the inner-sphere complexes are similar to those of the Ga(III)/tropolone system which is known to react according to the dissociative Id mechanism and to the relevant rate constants for water exchange at the metal ion. The effects of pH on the UV-Vis absorption, fluorescence emission properties and NMR spectral features on the Ga(III)/L system were also investigated. Spectrophotometric titrations in the UV region reveal that, in acid medium the prevailing species is M(HL)4+ whereas the chelate ML3+ prevails for [H+] < 0.01 M. The results indicate metal coordination at the oxygen atoms of the 3-hydroxo-2-oxopyridine residues.  相似文献   

19.
A full quantitative analysis of Fe K-edge X-ray absorption spectra has been performed for hemes in two porphynato complexes, that is, iron(III) tetraphenylporphyrin chloride (Fe(III)TPPCl) and iron(III) tetraphenylporphyrin bis(imidazole) (Fe(III)TPP(Imid)2), in two protein complexes whose X-ray structure is known at atomic resolution (1.0 A), that is, ferrous deoxy-myoglobin (Fe(II)Mb) and ferric aquo-myoglobin (Fe(III)MbH2O), and in ferric cyano-myoglobin (Fe(III)MbCN), whose X-ray structure is known at lower resolution (1.4 A). The analysis has been performed via the multiple scattering approach, starting from a muffin tin approximation of the molecular potential. The Fe-heme structure has been obtained by analyzing independently the Extended X-ray Absorption Fine Structure (EXAFS) region and the X-ray Absorption Near Edge Structure (XANES) region. The EXAFS structural results are in full agreement with the crystallographic values of the models, with an accuracy of +/- 0.02 A for Fe-ligand distances, and +/-6 degrees for angular parameters. All the XANES features above the theoretical zero energy (in the lower rising edge) are well accounted for by single-channel calculations, for both Fe(II) and Fe(III) hemes, and the Fe-N p distance is determined with the same accuracy as EXAFS. XANES evaluations of Fe-5th and Fe-6th ligand distances are determined with 0.04-0.07 A accuracy; a small discrepancy with EXAFS (0.01 to 0.05 A beyond the statistical error), is found for protein compounds. Concerns from statistical correlation among parameters and multiple minima in the parameter space are discussed. As expected, the XANES accuracy is slightly lower than what was found for polarized XANES on Fe(III)MbCN single crystal (0.03-0.04 A), and states the actual state-of-the-art of XANES analysis when used to extract heme-normal parameters in a solution spectrum dominated by heme-plane scattering.  相似文献   

20.
This study reports thermodynamic and kinetic data of Sb(III) adsorption from single metal solutions onto synthetic aqueous goethite (alpha-FeOOH). Batch equilibrium sorption experiments were carried out at 25 degrees C over a Sb:Fe molar range of 0.005-0.05 and using a goethite concentration of 0.44 g Fe/L. Experimental data were successfully modelled using Langmuir (R2 > or = 0.891) and Freundlich (R2 > or = 0.990) isotherms and the following parameters were derived from triplicate experiments: Kf = 1.903 +/- 0.030 mg/g and 1/n = 0.728 +/- 0.019 for the Freundlich model and b = 0.021 +/- 0.003 L/mg and Qmax = 61 +/- 8 mg/g for the Langmuir model. The thermodynamic parameters determined were the equilibrium constant, Keq =1.323 +/- 0.045, and the Gibb's free energy, DeltaG0 = -0.692 +/- 0.083 kJ/mol. The sorption process is very fast. At a Sb:Fe molar ratio of 0.05, 40-50% of the added Sb is adsorbed within 15 min and a steady state is achieved. The experimental data also suggest that desorption can occur within 24 h of reaction due to the oxidation of Sb(III) on the goethite surface. Finally, calculated pH of the aqueous solution using MINTEQ2 agrees well with the measured pH (3.9 +/- 0.7; n = 30). At pH 4, the dominant Sb species in solution are Sb(OH)3 and HSbO2 which both likely adsorb as inner sphere complexes to the positively charged goethite surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号