首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高木质素催化热解所得芳烃的产率,本研究以碱木质素为原料,在碱木质素炭和ZSM-5的二元催化体系下进行快速热解实验,选取催化剂比例、热解温度、热解时间等为实验变量,探究碱木质素热解产物中芳烃的变化规律以及碱木质素炭和ZSM-5协同催化作用机理。结果表明,碱木质素催化热解所得芳烃的产量从17 mg/g(未加炭)提高到33 mg/g(炭添加量为1 g),产率增加了近一倍。通过不同工况研究发现,碱木质素快速热解制备芳烃的最佳条件是:碱木质素∶碱木质素炭∶ZSM-5=1∶1∶1,热解温度为500℃,热解时间为10 min。机理分析表明,热解过程中碱木质素炭主要起断键作用,而ZSM-5起择形芳构化作用,两者协同作用得到更高的芳烃产率。  相似文献   

2.
沸石载体结构对甲烷无氧芳构化性能的影响   总被引:7,自引:1,他引:6  
考察了担载MoO3的沸石催化剂上甲烷的无氧芳构化性能,并与沸石结构相关联.结果表明,孔径与苯分子动态直径相当的ZSM-5、ZSM-8、ZSM-11和β沸石等是甲烷无氧芳构化催化剂的良好载体,其中3%MoO3/HZSM-11具有最高的甲烷芳构化活性和稳定性,973K下的转化率和苯选择性分别为8.0%和90.9%;6%MoO3/HZSM-8与7%MoO3/H-β芳构化性能相当.以HMCM-41和HSAPO-34为载体时芳构化活性很低,以HMOR、HX和HY为载体时仅有少量乙烯生成,而以HSAPO-5和HSAPO-11为载体时未检测到烃类生成.  相似文献   

3.
沸石在甲醇转化为烃过程中积炭性能的考察   总被引:1,自引:0,他引:1  
用热重法(TGA)和程序升温脱附法(TPD)考察了几种不同孔道结构的沸石——毛沸石(HE),类毛—菱钾沸石(HSW),Fu-1,ZSM-5,ZSM-11,丝光沸石(HM)和Y 型沸石——在甲醇转化为烃时的积炭行为。认为甲醇在沸石上转化为烃时的积炭倾向不仅与沸石的孔道结构有关,而且也与其强酸部位(即TPD 谱的峰Ⅱ)的酸量有着密切关系。甲醇在所考察过的七种沸石上的积炭初速度有着如下排列顺序:HE>(HSW,HY)>HM>(HF,HZSM-5,HZSM-11);其除炭初速度的大小有着与积炭初速度一致的顺序。采用往ZSM-5沸石上添加磷或镁等化合物以改质的方法,可以调节沸石的酸性和孔道尺寸,使得沸石的抗积炭能力增强,有利于改善沸石催化剂的稳定性和选择性。甲醇在改质沸石催化剂上转化为烃时的积炭初速度有着下列顺序,Zn ZSM-5》HZSM-5>Mg ZSM-5>PZSM-5>MnZSM-5。  相似文献   

4.
以苯乙醚(PEE)和苯基苄基醚(BOB)为类煤模型化合物,在固定床反应器上研究了它们在镍改性HZSM-5催化剂存在下的催化热解行为。采用浸渍法将镍负载于HZSM-5沸石,对所得催化剂采用XRD、FT-IR、H2-TPR、NH3-TPD进行表征,还研究了还原预处理对催化剂性能的影响。研究表明,Ni O/HZSM-5能显著提高两种模型化合物热解液相产物中酚类化合物的收率。与Ni/HZSM-5相比,Ni O/HZSM-5对苯乙醚热解催化效果更好。  相似文献   

5.
复合分子筛催化微晶纤维素水解   总被引:1,自引:0,他引:1  
于杰  王景芸  王震  周明东  王海彦 《化学通报》2018,81(10):944-950
采用水热晶化法制备了HY/ZSM-5复合分子筛。通过XRD、SEM、N2-吸附脱附、NH3-TPD及吡啶吸附红外光谱等手段表征催化剂的结构和性质。结果表明,HY与HZSM-5复合后HY型分子筛完全被HZSM-5紧密包裹,形成致密的核壳结构。与机械混合物相比,复合分子筛微孔比表面积及孔体积均有所减少,总酸量略高,弱酸量小,而强酸量大,Br9nsted酸量与之相似,而Lewis酸量有所减少。将所制备的HY/ZSM-5复合分子筛催化剂应用于以离子液体氯化1-乙基-3-甲基咪唑鎓([Emim]Cl)为溶剂的纤维素水解反应中,与HY催化的纤维素水解相比,HY/ZSM-5催化纤维素水解反应获得的最佳葡萄糖收率由28.04%提高到38.78%,葡萄糖选择性由28.91%提高至48.29%。  相似文献   

6.
为了进一步闸明ZSM-5沸石的选择性催化作用,本文利用CaO对其改性,从实验和理论计算方面探讨对二甲苯选择性的变化,得到一些有意义的结果。(一)实验及结果ZSM-5沸石原粉,经HCl交换成HZSM-5沸石,再和CaO按一定比例混合在一定温度下焙烧数小时,即为改性的催化剂HZSM-5-CaO。  相似文献   

7.
在微型反应器中研究了甲醇—汽油法所用ZSM-5沸石催化剂的再生性。反应温度在370℃—450℃的范围内,ZSM-5(A)型(H-5014)和ZSM-5(B)型(H-5021)两种催化剂都具有较好的再生性。在小型固定床等温反应器中,在压力5gk/cm~2,温度390℃,空速2h~(-1)(体积)的条件下,进行催化剂的寿命试验。对ZSM-5(A)型(AC82-2)和ZSM-5(B)型(BC82-1)两种催化剂分别进行了5个和8个周期的反应,累计反应时间都超过了1000小时,平均每克催化剂处理甲醇分别为3150.7克和2447.1克。催化剂的活性,选择性和稳定性仍保持良好。  相似文献   

8.
用微型反应器测定了AIPO_4-5,SAPO-5以及HZSM-5样品上的异丙苯裂解和邻二甲苯异构化反应活性。发现AIPO_4-5对上述两反应是非活性的,而SAPO_4-5及 HZSM-5有良好的活性。用TG-DTA测定了HY,SAPO-5和 HZSM-5在异丙苯裂解反应中、500℃下的积炭量,并用IR,ESR研究了炭沉积物的性质,发现SAPO-5的抗积炭性能优于孔径大小相同的HY沸石。  相似文献   

9.
王圣  黄镇  方越  秦枫  徐华龙  沈伟 《燃料化学学报》2018,46(10):1218-1224
分别采用共沉淀法和水热法制备了ZnCrO_x复合金属氧化物和HZSM-5沸石,通过物理混合得到双功能催化剂,实现了合成气一步高选择性制备异构烷烃。采用XRD、TEM、氮吸附和NH3-TPD等技术对催化剂进行了表征,考察了双功能催化剂中HZSM-5沸石组分硅铝比以及ZnCrO_x/HZSM-5质量比(OX/ZEO mass ratio)对合成气催化转化反应性能的影响。结果表明,随着HZSM-5硅铝比的增加,催化剂酸密度下降,CO转化率略有下降,产物中C5+选择性显著提高,异构烷烃比例不断增加。此外,在保证CO转化率的前提下提高双功能催化剂中ZnCrO_x组分的比例,产物中C5+的选择性也显著上升。在400℃、2.0 M Pa、进料空速(GHSV)为3600 mL/(h·gcat)的条件下,合成气(H2/CO(volume ratio)=2)转化率达到35%,C5+选择性超过44%,且C5+中异戊烷比例高达65%。  相似文献   

10.
木质素催化转化制取苯、甲苯和二甲苯   总被引:1,自引:0,他引:1  
对HZSM-5、HY和MCM-22三种催化剂进行了比较,其中HZSM-5催化裂解木质素制备苯、甲苯和二甲苯(BTX)的结果最优.确定了木质素催化裂解的最佳反应条件,包括反应温度、载气流速、催化剂/木质素配比.当反应温度为550-600℃,载气流速为300mL/min,催化剂/木质素配比为2时,使用HZSM-5催化裂解制备BTX的最高C产率和芳香选择性分别可达25.3%和90.9%。  相似文献   

11.
水热稳定性是决定沸石分子筛工业应用价值的重要影响因素.众所周知,沸石材料的水热稳定性主要受其拓扑机构及骨架硅铝组成的影响,但同时也受其晶粒尺寸的影响.纳米级HZSM-5沸石虽然具有优异的催化性能及抗积碳失活性能,但由于晶粒尺寸较小,导致其水热稳定性较差.如何提高纳米HZSM-5沸石的水热稳定性,使其能够在高苛刻度的水热环境下(如催化裂化过程,催化剂再生需在高于700℃的水热条件下进行)得到应用,是十分有意义的课题.已有研究表明,磷改性可以提高ZSM-5沸石的水热稳定性,但多集中于采用磷酸、磷酸氢二铵、磷酸二氢铵等无机磷化物进行改性,水热稳定性提高效果不能令人满意.我们研究组采用有机磷化合物磷酸三甲酯改性纳米HZSM-5沸石,在提高纳米HZSM-5沸石水热稳定性方面取得了较好的效果.采用X射线衍射(XRD)、氨气程序升温脱附(NH_3-TPD)、氮气物理吸附、氨气吸附红外光谱等手段对改性沸石进行了表征.结果表明,采用磷酸三甲酯改性的纳米HZSM-5沸石水热稳定性得到明显提高,沸石经苛刻的高温水蒸气处理(800℃,4 h)后,在相对结晶度、孔结构、酸度的保留度方面具有较大提高,提高幅度明显高于无机磷化合物磷酸氢二铵改性的纳米HZSM-5沸石.在上述研究基础上,我们采用固定床微反模拟流化床反应条件对磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解反应进行了研究.结果表明,在反应温度540℃,剂/油比等于4,油剂接触时间约为4 s的条件下,全馏分FCC汽油在磷改性纳米HZSM-5沸石上经烯烃组分催化裂解反应后,油品烯烃含量(尤其是重烯烃)明显降低,生成了大量高附加值的C2–C4烯烃,同时油品中芳烃含量增加.与此同时,经烯烃组分裂解后的油品还呈现出辛烷值升高,硫含量降低的有利变化.可以看出,磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解是解决FCC汽油烯烃含量高的一条有效途径,充分克服了现有FCC汽油加工工艺存在的一些缺陷,如S-zorb工艺功能单一、成本高;加氢脱硫工艺油品辛烷值损失大、氢耗高;以及OTA技术(本研究组之前的工作)烯烃转化率低、催化剂积碳失活快等缺陷.值得注意的是,磷酸三甲酯改性的纳米HZSM-5沸石在全馏分FCC汽油烯烃组分催化裂解反应性能方面,明显比磷酸二氢铵改性的纳米HZSM-5沸石表现优异.通过我们的研究可以认为,磷酸三甲酯改性将会为纳米HZSM-5沸石在高苛刻度水热条件下的应用提供更多的机会.  相似文献   

12.
赵云  刘家旭  熊光  郭洪臣 《催化学报》2017,38(1):138-145
水热稳定性是决定沸石分子筛工业应用价值的重要影响因素.众所周知,沸石材料的水热稳定性主要受其拓扑机构及骨架硅铝组成的影响,但同时也受其晶粒尺寸的影响.纳米级HZSM-5沸石虽然具有优异的催化性能及抗积碳失活性能,但由于晶粒尺寸较小,导致其水热稳定性较差.如何提高纳米HZSM-5沸石的水热稳定性,使其能够在高苛刻度的水热环境下(如催化裂化过程,催化剂再生需在高于700℃的水热条件下进行)得到应用,是十分有意义的课题.已有研究表明,磷改性可以提高ZSM-5沸石的水热稳定性,但多集中于采用磷酸、磷酸氢二铵、磷酸二氢铵等无机磷化物进行改性,水热稳定性提高效果不能令人满意.我们研究组采用有机磷化合物磷酸三甲酯改性纳米HZSM-5沸石,在提高纳米HZSM-5沸石水热稳定性方面取得了较好的效果.采用X射线衍射(XRD)、氨气程序升温脱附(NH3-TPD)、氮气物理吸附、氨气吸附红外光谱等手段对改性沸石进行了表征.结果表明,采用磷酸三甲酯改性的纳米HZSM-5沸石水热稳定性得到明显提高,沸石经苛刻的高温水蒸气处理(800℃,4 h)后,在相对结晶度、孔结构、酸度的保留度方面具有较大提高,提高幅度明显高于无机磷化合物磷酸氢二铵改性的纳米HZSM-5沸石.在上述研究基础上,我们采用固定床微反模拟流化床反应条件对磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解反应进行了研究.结果表明,在反应温度540℃,剂/油比等于4,油剂接触时间约为4 s的条件下,全馏分FCC汽油在磷改性纳米HZSM-5沸石上经烯烃组分催化裂解反应后,油品烯烃含量(尤其是重烯烃)明显降低,生成了大量高附加值的C2–C4烯烃,同时油品中芳烃含量增加.与此同时,经烯烃组分裂解后的油品还呈现出辛烷值升高,硫含量降低的有利变化.可以看出,磷改性纳米HZSM-5沸石上全馏分FCC汽油烯烃组分催化裂解是解决FCC汽油烯烃含量高的一条有效途径,充分克服了现有FCC汽油加工工艺存在的一些缺陷,如S-zorb工艺功能单一、成本高;加氢脱硫工艺油品辛烷值损失大、氢耗高;以及OTA技术(本研究组之前的工作)烯烃转化率低、催化剂积碳失活快等缺陷.值得注意的是,磷酸三甲酯改性的纳米HZSM-5沸石在全馏分FCC汽油烯烃组分催化裂解反应性能方面,明显比磷酸二氢铵改性的纳米HZSM-5沸石表现优异.通过我们的研究可以认为,磷酸三甲酯改性将会为纳米HZSM-5沸石在高苛刻度水热条件下的应用提供更多的机会.  相似文献   

13.
甲醇转化过程中的积炭行为   总被引:4,自引:1,他引:3  
在所设计的多功能催化反应及表征装置上,利用一种新的以色谱仪为基础测定催化剂结炭量及结炭C/H 比的方法,并配合氨吸咐TPD,电镜和比表面测量等表征手段,对HZSM-5在甲醇转化过程中的积炭行为进行了研究。在实验条件下,反应温度为350℃和500℃时,HZSM-5上的积炭随反应时间的变化可分别用C_c=1.00×10~(-4)t~(5.00) (350℃)C_c=0.25t~(1.67) (500℃)表示。结炭的产生导致HZSM-5沸石的比活性降低,酸性下降,孔道及孔口堵塞。TPO 及电镜结果表明,HZSM-5上结炭至少有三种形式:初具石墨化的玻璃态炭,无定形炭和部分较富氢的炭(或焦)。在失活的HZSM-5上甲苯歧化反应产物中的对二甲苯选择性随结炭量的增多而提高。  相似文献   

14.
以贵金属改性的钙钛矿为活性组分,通过等体积浸渍法制备了Pd/La0.8Ce0.2MnO3/ZSM-5催化剂,并采用XRD、BET、SEM和H2-TPR等技术对催化剂进行了表征。在固定床反应器上,对Pd/La0.8Ce0.2MnO3/ZSM-5催化剂上的甲苯为目标污染物的催化燃烧进行了研究,考察了焙烧温度、负载量及ZSM-5的性质对其催化活性的影响。结果表明,所得到Pd/La0.8Ce0.2MnO3催化剂仍保持钙钛矿型结构,Pd均匀的分布在催化剂表面,有利于催化剂活性的提高。当ZSM-5硅铝原子比为25、La0.8Ce0.2MnO3负载量为20%、焙烧温度为750℃时,La0.8Ce0.2MnO3/ZSM-5上甲苯的起燃温度和完全转化温度分别为200和279℃;加入0.3%的Pd后,Pd/La0.8Ce0.2MnO3/ZSM-5的催化活性明显提高,甲苯起燃温度下降了90℃,完全转化温度可低至230℃。  相似文献   

15.
 用稀土氧化物浸渍改性纳米HZSM-5沸石制备了降低汽油中烯烃催化剂。临氢条件下,在固定床反应器上对催化剂的降低烯烃性能进行了考察。结果表明,催化剂表现出很强的降烯烃能力。改性的纳米ZSM-5沸石催化剂对汽油的降烯烃作用得益于其优异的异构化、芳构化和烷基化性能。在温度370 ℃、压力3 MPa、质量空速3 h-1和氢油比 (v/v)600的反应条件下, FCC汽油(<70℃馏分)中烯烃含量从65.9%(φ) 降至32.5%(φ),异构烷烃含量从23.3%(φ)增加到44.3%(φ),芳烃和环烷烃部分增加,直链烷烃基本不变,在大量降低烯烃的同时,汽油的辛烷值(RON)不降低。催化剂连续反应1000 h以上,性能稳定。  相似文献   

16.
采用等体积浸渍法制备了Ni/ZSM-5、Ni/HY、Ni/Al2O3和Ni/USY四个系列Ni含量不同的催化剂,在固定床反应器中考察了四类催化剂对菲的加氢裂化制BTX反应的催化性能。借助BET、SEM、热重和差热分析对催化剂的形貌、比表面积、平均孔径及积炭情况进行了表征,结合其结果对催化剂性能进行了分析。结果表明,Ni/HY和Ni/USY催化剂中Ni含量为12%时性能最优,收率可达52%。Al2O3催化剂的最佳Ni含量为6%,该系催化剂初始性能尚可,但失活较快;ZSM-5型分子筛催化剂性能较差。  相似文献   

17.
用HZSM-5沸石催化剂合成丙酸酯的研究   总被引:2,自引:0,他引:2  
赵振华  张绵吉 《催化学报》1991,12(4):328-332
迄今为止,工业上生产羧酸酯主要采用以浓硫酸作催化剂的均相酯化反应法,然而此法存在腐蚀设备、后处理工序复杂等缺点.ZSM-5沸石具有独特的晶体结构和优良的物化性能,是许多有机催化反应的理想催化剂.文献[1]报道了用HZSM-5沸石作催化剂合成乙酸乙酯,我们在常压液-固相酯化反应中用自制的ZSM-5沸石催化合成了一系列丙酸酯,该催化剂具有良好的催化活性、选择性和稳定性.  相似文献   

18.
本文用0.1NNaOH和3NNaCl溶液分别处理HZSM-5沸石,并由电位滴定法测定其酸度值,NH_4ZSM-5沸石随热处理温度递增脱RNH_2形成HZSM-5沸石的过程以及HZSM-5沸石的脱OH作用均由DTA-TG曲线记录。结果表明,HZSM-5沸石的表面H~+与H_2O分子结合形成H~+(H_2O)_x品种H~+是佛石酸性的主要来源。HZSM-5沸石的脱OH作用在~460到800℃温度区间内发生,并且得出结论,L酸中心在水的作用下不能转变为B酸中心。随着HZSM-5佛石脱OH作用的增加,它的憎水性增强。此外,灼烧温度增加,HZSM-5沸石的B酸中心和L酸中心均随之减少。  相似文献   

19.
对二甲苯是石化行业中一种重要的大宗化学品,而且生物质基对二甲苯的制备在学术和工业领域都具有重要意义.对木质素和甲醇在不同金属氧化物改性的HZSM-5催化剂作用下共催化热解一步法制备可再生的对二甲苯的过程进行了研究.研究结果表明,在HZSM-5催化剂中引入La,Mg,Ce和Zn元素可以调节催化剂的酸强度和强酸性位点,进而促进轻芳烃(如苯和甲苯)烷基化形成对二甲苯以及间/邻二甲苯向对二甲苯的异构化.木质素和甲醇的共催化热解显著地提高了对二甲苯的产率.在20%La_2O_3/HZSM-5催化剂作用下,木质素与33 wt%甲醇共催化热解获得的对二甲苯的最高收率为13.9%,对二甲苯/二甲苯比率为82.7%.并且基于产物的分析以及催化剂的表征,提出了由木质素制备对二甲苯的可能反应途径.  相似文献   

20.
铁改性的Mo/ZSM-5催化剂上NO的选择性催化还原反应   总被引:2,自引:2,他引:2  
采用浸渍法制备了Mo/ZSM-5, Fe/ZSM-5和不同Fe和Mo摩尔比的Fe-Mo/ZSM-5样品, 并以氨为还原剂对其NO选择性催化还原活性以及反应条件对催化性能的影响进行了研究. 结果表明, Fe-Mo/ZSM-5样品的NOx转化率明显比单独的Mo/ZSM-5和Fe/ZSM-5的高. 当n(Fe):n(Mo)为1.5时, Fe-Mo/ZSM-5样品具有最佳催化性能, 其NOx转化率在430 ℃时达到了96%, 并且能在高空速和不同O2气浓度的条件下保持高的催化活性. 同时采用XRD和XPS技术分别对催化剂的体相结构和表面性质进行了研究, 结果表明, 当n(Fe):n(Mo)=1.5时, Fe和Mo元素之间以及与载体HZSM-5之间存在较强的相互作用, 并且其表面的Mo3d的含量最高. 这可能与其高的催化活性有关. 另外还发现, 在反应过程中Fe-Mo/ZSM-5催化剂表面的氮氧物种主要是吸附态NO, 因此可以推测NO的催化还原反应机理是, 在催化剂表面上, 吸附态NO与吸附NH3物种直接反应生成氮气, 而非经过氧化为NO2的途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号