首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
氮化铝(AlN)具有超宽禁带宽度(6.2 eV)、高热导率(340 W/(m·℃))、高击穿场强(11.7 MV/cm)、良好的紫外透过率、高化学和热稳定性等优异性能,是氮化镓基(GaN)高温、高频、高功率电子器件以及高Al组分深紫外光电器件的理想衬底材料.物理气相传输(PVT)法是制备大尺寸高质量AlN单晶最有前途的方法.本文介绍了AlN单晶的晶体结构、基本性质及PVT法生长AlN晶体的原理与生长习性.基于AlN单晶PVT生长策略,综述了自发形核工艺、同质外延工艺及异质外延工艺的研究历程,各生长策略的优缺点及其最新进展.最后对PVT法生长AlN单晶的发展趋势及其面临的挑战进行了简要展望.  相似文献   

2.
正氮化铝是极具应用潜力的超宽禁带半导体材料,具有很多优良的性质,如其禁带宽度高达6.2 eV,同时具有高击穿场强、高饱和电子漂移速率、高化学和热稳定性,及高导热、抗辐射等优异性能,因此氮化铝是紫外/深紫外LED、紫外LD最佳衬底材料,也是高功率、高频电子器件理想衬底材料。此外,氮化铝具有优良的压电性、高的声表面波传播速度和较高的机电耦合系数,是GHz级声表面波器件的优选压电材料。  相似文献   

3.
4H碳化硅(4H-SiC)单晶具有禁带宽度大、载流子迁移率高、热导率高和稳定性良好等优异特性,在高功率电力电子、射频/微波电子和量子信息等领域具有广阔的应用前景。经过多年的发展,6英寸(1英寸=2.54 cm)4H-SiC单晶衬底和同质外延薄膜已得到了产业化应用。然而,4H-SiC单晶中的总位错密度仍高达103~104 cm-2,阻碍了4H-SiC单晶潜力的充分发挥。本文介绍了4H-SiC单晶中位错的主要类型,重点讲述4H-SiC单晶生长、衬底晶圆加工以及同质外延过程中位错的产生、转变和湮灭机理,并概述4H-SiC单晶中位错的表征方法,最后讲述了位错对4H-SiC单晶衬底和外延薄膜的性质,以及4H-SiC基功率器件性质的影响。  相似文献   

4.
气相生长氮化铝单晶的新方法   总被引:1,自引:1,他引:0  
通过在钨坩埚盖开小孔的方法改变氮化铝结晶衬底上的温度场分布,在开孔处形成局部低温区;由于孔的几何尺寸的限制和氮化铝晶体生长的各向异性,开孔处的氮化铝晶体单晶化;随后,开孔处的单晶起籽晶的作用,逐渐长成较大尺寸、较高质量的氮化铝单晶.目前用该方法已经制备出直径大于2mm的氮化铝单晶体.  相似文献   

5.
采用液封直拉(LEC)法批量生长的直径2英寸(1英寸=2.54 cm)n型Te-GaSb(100)单晶的位错腐蚀坑密度(EPD)通常低于300 cm-2,达到无位错水平。本文利用X射线摇摆曲线以及倒易空间图(RSM)对这种GaSb单晶抛光衬底的晶格完整性和亚表面损伤情况进行了分析表征,结果表明经过工艺条件优化的化学机械抛光处理,GaSb单晶衬底表面达到原子级光滑,不存在亚表面损伤层。利用分子束外延在这种衬底上可稳定生长出高质量的Ⅱ类超晶格外延材料并呈现出优异的红外探测性能。在此基础上,对CaSb衬底材料的物性、生长制备和衬底加工条件之间的内在关系进行了综合分析。  相似文献   

6.
p型4H-SiC是制备高功率电力电子器件的理想衬底材料,但由于工艺技术的制约,国内尚无能力生产高质量、大尺寸、低电阻的p型4H-SiC单晶衬底。本文使用物理气相传输(PVT)法制备了直径为4英寸(1英寸=2.54 cm)Al掺杂的p型4H-SiC单晶衬底。通过KOH腐蚀表征样品位错密度,使用高分辨X射线衍射(HRXRD)表征其晶体质量,利用拉曼光谱扫描确定其晶型,采用非接触式电阻测试仪测试其电阻率。结果表明,衬底整体位错密度较低,结晶质量良好,晶型稳定且衬底全片电阻率小于0.5 Ω·cm。通过第一性原理平面波超软赝势方法对本征4H-SiC及Al元素掺杂后样品的体系进行能带结构、电子态密度的计算。结果表明Al掺杂后样品禁带宽度减小,费米能级穿过价带,体现出p型半导体的特征。研究结果为大规模生产高质量、低电阻的p型4H-SiC衬底提供思路。  相似文献   

7.
<正>应诺贝尔物理奖获得者天野浩教授为会议主席的组委会邀请,奥趋光电技术(杭州)有限公司在日本横滨4月23~25日举行的LED工业应用国际会议(LEDIA-2019)上,推出了直径60 mm氮化铝单晶及晶圆,该晶圆为迄今为止国内外见诸报道的最大尺寸氮化铝晶圆。检测结果表明,晶片的拉曼半高宽仅为2. 85  相似文献   

8.
使用物理气相传输法(PVT)通过扩径技术制备出直径为209 mm的4H-SiC单晶,并通过多线切割、研磨和抛光等一系列加工工艺制备出标准8英寸SiC单晶衬底。使用拉曼光谱仪、高分辨X射线衍射仪、光学显微镜、电阻仪、偏光应力仪、面型检测仪、位错检测仪等设备,对8英寸衬底的晶型、结晶质量、微管、电阻率、应力、面型、位错等进行了详细表征。拉曼光谱表明8英寸SiC衬底100%比例面积为单一4H晶型;衬底(004)面的5点X射线摇摆曲线半峰全宽分布在10.44″~11.52″;平均微管密度为0.04 cm-2;平均电阻率为0.020 3 Ω·cm。使用偏光应力仪对8英寸SiC衬底内部应力进行检测表明整片应力分布均匀,且未发现应力集中的区域;翘曲度(Warp)为17.318 μm,弯曲度(Bow)为-3.773 μm。全自动位错密度检测仪对高温熔融KOH刻蚀后的8英寸衬底进行全片扫描,平均总位错密度为3 293 cm-2,其中螺型位错(TSD)密度为81 cm-2,刃型位错(TED)密度为3 074 cm-2,基平面位错(BPD)密度为138 cm-2。结果表明8英寸导电型4H-SiC衬底质量优良,同比行业标准达到行业先进水平。  相似文献   

9.
氮化镓(GaN)作为第三代宽禁带半导体核心材料之一,具有高击穿场强、高饱和电子漂移速率、抗辐射能力强和良好的化学稳定性等优良特性,是制作宽波谱、高功率、高效率光电子、电力电子和微电子的理想材料.受制于氮化镓单晶衬底的尺寸、产能及成本的影响,当前的GaN基器件主要基于异质衬底(硅、碳化硅、蓝宝石等)制作而成,GaN单晶衬底的缺乏已成为制约GaN器件发展的瓶颈.近年来,国内外在GaN单晶衬底制备方面取得了较大的进展.本文综述了氮化镓单晶生长的最新进展,包括氢化物气相外延法、氨热法和钠助熔剂法的研究进展,分析了各生长方法面临的挑战与机遇,并对氮化镓单晶材料的发展趋势讲行了展望.  相似文献   

10.
氮化镓(GaN)晶体是制备蓝绿光激光器、射频微波器件以及电力电子等器件的理想衬底材料,在激光显示、5G通讯及智能电网等领域具有广阔的应用前景.目前市场上的氮化镓单晶衬底大部分都是通过氢化物气相外延(Hydride Vapor Phase Epitaxy,HVPE)方法生长制备的,在市场需求的推动下,近年来HVPE生长技术获得了快速的发展.本论文综述了近年来HVPE方法生长GaN单晶衬底的主要进展,主要内容包含HVPE生长GaN材料的基本原理、GaN单晶中的掺杂与光电性能调控、GaN单晶中的缺陷及其演变规律和GaN单晶衬底在器件中的应用.最后对HVPE生长方法的发展趋势进行了展望.  相似文献   

11.
碳化硅(SiC)作为第三代半导体材料,不仅禁带宽度较大,还兼具热导率高、饱和电子漂移速率高、抗辐射性能强、热稳定性和化学稳定性好等优良特性,在高温、高频、高功率电力电子器件和射频器件中有很好的应用潜力。高质量、大尺寸、低成本SiC单晶衬底的制备是实现SiC器件大规模应用的前提。受技术与工艺水平限制,目前SiC单晶衬底供应仍面临缺陷密度高、成品率低和成本高等问题。高温溶液生长(high temperature solution growth, HTSG)法生长SiC单晶具有晶体结晶质量高、易扩径、易实现p型掺杂等独特的优势,有望成为大规模量产SiC单晶的主要方法之一,目前该方法的主流技术模式是顶部籽晶溶液生长(top seeded solution growth, TSSG)法。本文首先回顾总结了TSSG法生长SiC单晶的发展历程,接着介绍和分析了该方法的基本原理和生长过程,然后从晶体生长热力学和动力学两方面总结了该方法的研究进展,并归纳了该方法的优势,最后分析了TSSG法生长SiC单晶技术在未来的研究重点和发展方向。  相似文献   

12.
本文基于自主设计的氮化铝生长炉,开展了四组不同工艺条件下Al极性面氮化铝籽晶同质外延生长氮化铝单晶的生长特征及其结晶质量表征研究。研究发现:不同工艺条件下生长的晶体的拉曼图谱E2(high)特征峰峰位表明,晶体内部均存在较小的拉应力;在坩埚顶部在相对较高温度2 210 ℃、坩埚底部与顶部温差42 ℃的低过饱和度生长条件下,晶体表面光滑,呈现阶梯流生长形貌,并具有典型的氮化铝单晶生长习性面,晶体初始扩张角大于40°,高分辨率X射线衍射(HRXRD)测得0002、1012反射摇摆曲线及拉曼光谱检测结果表明,该条件下生长的氮化铝晶体结晶质量优异,并可实现快速扩径。基于该生长条件,通过外延生长后成功获得尺寸ϕ45~47 mm的氮化铝单晶锭,相关表征结果表明生长的氮化铝晶体具有优越的结晶性能。  相似文献   

13.
《人工晶体学报》2021,50(4):628-628
碳化硅是宽禁带半导体材料的典型代表,具有禁带宽、临界击穿电场高、热导率高等优异的物理性质,是制造高功率、高温半导体器件的理想半导体材料,也是现阶段从单晶衬底、外延、器件和应用产业链条技术全面发展的第三代半导体材料。
广州南砂晶圆半导体技术有限公司(简称南砂晶圆)成立于2018年,位于广州市南沙区,是聚焦碳化硅产业上游,专注碳化硅单晶衬底材料的高技术企业,是山东大学教育部新一代半导体材料研究院的产业化基地。其碳化硅单晶制备技术来源于山东大学晶体材料国家重点实验室。南砂晶圆以山东大学研发的6英寸碳化硅单晶制备技术成果为基础,并同山东大学开展全方位产学研深度合作,共同研发和生产碳化硅衬底材料,坚持创新发展,不忘初心,树立“聚沙成晶、科技报国”的愿景。
南砂晶圆已经建成1.3万平方米研发厂房,拥有晶体生长炉和完整的相关衬底加工线,产品主要以6英寸半绝缘和N型SiC衬底为主,现年产各类碳化硅衬底晶片6万片。2020年二期扩产项目已经动工,总投资9亿元,总建筑面积达64 746 m2,扩产后规模达1 000台碳化硅晶体生长炉及相应衬底加工设备,成为国际领先的碳化硅晶体材料及相关产品供应商。
南砂晶圆公司管理和技术团队实力雄厚,由教授、博士、硕士等研发与管理人员组成。南砂晶圆董事长王垚浩博士是教授级高级工程师,长期任佛山市国星光电股份有限公司(002449.SZ)董事长、总经理、党委书记,有丰富的企业管理经验,2003—2016年,连续担任科技部半导体照明重大专项和863专项专家组专家。  相似文献   

14.
沈波  杨学林  许福军 《人工晶体学报》2020,49(11):1953-1969
以氮化镓(GaN)、AlN(氮化铝)为代表的Ⅲ族氮化物宽禁带半导体是研制短波长光电子器件和高频、高功率电子器件的核心材料体系.由于缺少高质量、低成本的同质GaN和AlN衬底,氮化物半导体主要通过异质外延,特别是大失配异质外延来制备.由此导致的高缺陷密度、残余应力成为当前深紫外发光器件、功率电子器件等氮化物半导体器件发展的主要瓶颈,严重影响了材料和器件性能的提升.本文简要介绍了氮化物半导体金属有机化学气相沉积(MOCVD)大失配异质外延的发展历史,重点介绍了北京大学在蓝宝石衬底上AlN、高Al组分AlGaN的MOCVD外延生长和p型掺杂、Si衬底上GaN薄膜及其异质结构的外延生长和缺陷控制等方面的主要研究进展.最后对Ⅲ族氮化物宽禁带半导体MOCVD大失配异质外延的未来发展做了简要展望.  相似文献   

15.
锗片作为衬底材料已在空间太阳电池领域得到广泛的应用,新型锗基空间太阳能电池对锗片的需求由4英寸(1英寸=2.54 cm)提高到6英寸后,低位错锗单晶的生长难度增大.本文设计开发了一种适用于直拉法生长大尺寸、低位错锗单晶的双加热器热场系统,模拟研究了不同形状主加热器的热场分布,从而得到最优的热场环境.研究发现:渐变长度为...  相似文献   

16.
氮化镓(GaN)具有高击穿场强、高饱和电子漂移速率、抗辐射能力强和良好的化学稳定性等优良特性,是制作宽波谱、高功率、高效率光电子、电力电子和微电子的理想衬底材料.除气相法(包括HVPE(氢化物气相外延)、MOCVD(金属有机化合物化学气相沉淀)、MBE(分子束外延))生长GaN单晶外,液相法(包括氨热法和助熔剂法)近几年在制备GaN单晶方面取得了较大的进展.本文介绍了氨热法和助熔剂法的生长原理、装备特点及生长习性;综述了两种液相生长方法的研究历程及研究进展,并对液相法生长GaN单晶的发展趋势及主要挑战进行了展望.  相似文献   

17.
用脉冲激光淀积法(PLD)在(111)面SrTiO3衬底上外延生长ZnO单晶薄膜.样品分别在衬底温度为350℃、500℃、600℃下外延生长.X射线衍射(XRD)的结果表明,所得的ZnO单晶薄膜结晶性能好,只出现(002)和(004)两个衍射峰,(002)峰的半高宽度(FWHM)为0.23°.在荧光光谱中我们只观察到来源于带边激子跃迁的强UV发射,并且随着生长温度的升高,紫外峰的强度逐渐增强.样品的SEM图像表明所得ZnO薄膜表面平整,晶粒均匀.衬底温度为600℃时,所得到的ZnO薄膜结构完整,晶粒尺寸最大,均匀;而且紫外发射最强.  相似文献   

18.
采用物理气相传输(PVT)法扩径获得了8英寸(1英寸=2.54 cm)4H-SiC籽晶,用于8英寸导电型4H-SiC晶体生长,并加工出厚度520 μm的8英寸4H-SiC衬底。使用拉曼光谱、全自动显微镜面扫描、非接触电阻率测试仪面扫描和高分辨X射线衍射仪对衬底的晶型、微管、电阻率和结晶质量进行了表征。衬底颜色均一并结合拉曼光谱表明衬底4H-SiC晶型面积比例为100%;衬底微管密度小于0.3 cm-2;衬底电阻率范围20~23 mΩ·cm,平均值为22 mΩ·cm;(004)面高分辨X射线摇摆曲线半峰全宽为32.7″,表明衬底良好的结晶质量。  相似文献   

19.
本文采用物理气相传输法(PVT)及同质外延工艺,在自发生长的6 mm×7 mm AlN籽晶片上,通过4次迭代,成功生长出高质量1英寸AlN单晶锭.将生长出的单晶锭经过切片、研磨和抛光工艺加工成1英寸低表面粗糙度的单晶片,并采用拉曼光谱仪、扫描电子显微镜、高分辨率X射线衍射仪、分光光度计对籽晶片与外延晶片进行结晶质量、位错密度以及紫外透光率等性能表征.结果 表明:外延晶片的拉曼E2(high)半高宽为2.86 cm-1,(002)面XRD摇摆曲线半高宽为241 arcsec,说明晶片具有很高的结晶质量;经过同质外延4次迭代后的晶片较初始籽晶片相比质量有所下降,说明生长过程中由于非平衡生长存在缺陷的增殖;外延晶片具有极其优异的紫外透光率,深紫外265~280 nm波段下的吸收系数低至19~21.5 cm-1.  相似文献   

20.
SiC是宽带隙半导体材料的典型代表,具有优良的热学、力学、化学和电学性质,不但可以用作基于GaN的蓝色发光二极管的衬底材料,同时又是制作高温、高频、大功率电子器件的最佳材料之一,因此高质量、大直径SiC单晶的生长一直是材料研究领域的热点课题。目前美国的Cree公司在SiC单晶生长领域研发方面起步早、投入大,SiC单晶的直径达到4英寸,处于领先地位。我国在“十五”期间投入了一定的人力、物力进行了SiC单晶生长的研究,在生长2英寸SiC单晶的工作中取得了一定的成绩[1],但更大直径的SiC单晶生长技术进展缓慢,至今未见国内报道。而对…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号