首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在传统热催化材料的研究领域中,光照技术已经得到了广泛的应用,从而使传统热催化剂的催化反应活性和选择性得到优化.然而,在光热协同催化反应过程中,光照因素对催化反应过程的影响尚未得到很好地研究和理解.本文通过浸渍法制得Pt/Al2O3催化剂,并应用于光热协同催化CO2加氢反应.结果证明,在光热协同CO2加氢催化反应中, Pt/Al2O3催化剂表现出光热协同效应.本文结合原位漫反射红外光谱(operandoDRIFTS)和密度泛函理论计算(DFT)对光照因素对该催化反应过程的作用机制进行了进一步深入研究.结果表明, CO气体分子从Pt纳米颗粒上的脱附过程为CO2加氢反应的重要步骤;CO气体分子在Pt纳米颗粒上脱附的位置包含台阶位置(Ptstep)和平台位置(Ptterrace).结果表明,反应过程中CO气体分子从Pt表面的脱附有利于催化剂暴露出Pt反应活性位点.值得注意的是,在光热协同催化CO2加氢反应过程中,光照和温度因素对CO气体分子的脱附过程具有不同影响.吸附能的计算结果证明, CO气体分子吸附在Ptstep和Ptterrace上的吸附能分别为-1.24和-1.43eV.由此可见, CO气体分子与Pt纳米颗粒上的Ptstep吸附位点之间相互作用更强.在无光照作用的条件下对催化剂进行加热, CO气体分子更容易从Ptterrace吸附位点发生脱附;但是在对应的温度下加入光照作用后,吸附在Ptstep位点上的CO气体分子会先转移到Ptterrace吸附位点上,随后脱附,从而促进CO2加氢反应的进行.  相似文献   

2.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

3.
生物质气再燃减少流化床N_2O排放的实验研究   总被引:2,自引:1,他引:1  
以生物质气化气作为再燃燃料,在小型流化床反应器内进行了N2O脱除的实验研究。研究了生物质气化气投入位置、料层高度、再燃燃料比、烟气含氧量和反应温度对N2O排放的影响。结果表明,距布风板200 mm的B喷口较离布风板较近的A喷口(距布风板100 mm)对应的N2O转化率高;反应温度为850℃、按照N2O/N2配置模拟烟气的情况下,B口喷入生物质气量为1%,床料CaO高度为10 mm时N2O接近完全分解;反应温度为850℃,床层高度大于20 mm时,从B口喷入大于0.4%比例的生物质气对应N2O分解率高于95%。  相似文献   

4.
近年来,纳米科学技术的迅速发展给催化领域,特别是多相催化带来了新的机遇和挑战.科学家们开始着眼于在纳米尺度上对催化剂结构和催化性能进行表征、控制和设计.Co3O4作为一种重要的半导体金属氧化物材料,由于其优异的氧化还原性质,在锂电池、气体传感器以及多相催化领域得到了十分广泛的应用.最近,研究者发现Co3O4纳米晶在催化CO低温氧化和CH4活化等一系列重要反应中表现出显著的反应活性和晶面效应,表明有效设计和合成特定的高活性、高选择性的纳米晶面,对催化领域的发展将具有十分重要的意义.因而,从原子层面对纳米晶所表现出的这种高活性和晶面效应进行深入解释,将为高效催化剂设计提供重要指导.低温CO氧化作为一种重要的催化反应在燃料电池、空气净化与汽车尾气处理中具有重要的应用价值.本文采用密度泛函理论对Co3O4纳米晶催化CO氧化反应的机理、晶面效应以及结构敏感性进行了理论研究.首先,研究了CO在Co3O4(001)和(011)表面Co,CoOo和Co-Ot三种不同位点的吸附扩散行为,发现CO在Co位点表现出较强的吸附行为,但这种吸附构型需要克服很高的能垒(~1 eV)才能转变到Co-O离子对位点,在低温下这种转变将不可能发生,因此我们推断CO在Co位点的吸附对Co3O4催化CO氧化的晶面效应没有显著影响.接着,对CO在Co-O离子对位点抽提晶格氧生成CO2的反应机理进行了研究.我们发现,(011)表面Co-Ot位点可以较强地吸附CO(吸附能-1.15 eV),并十分容易夺取晶格氧离子(能垒0.26 eV),具有很低的势能面,因而其CO氧化活性明显大于(001)面.为了更清楚地理解这种晶面效应和结构敏感效应的本质,我们提出将CO2形成步的过渡态在反应路径上的能级作为反应活性指标.这种活性指标兼顾考虑了CO在Co-O氧位点的吸附覆盖度和CO2形成步的反应能垒,可以近似理解为反应的表观活化能.据此我们得出,Co3O4不同表面不同品格位点催化CO氧化的反应活性顺序为:(011)-Co-Ot>>(001)-Co-Oo>(011)-Co-Oo>(001)-Co-Ot.由于CO吸附和CO2形成步都涉及到表面被还原的过程,我们因此发现CO催化氧化活性的高低与表面晶格氧位点的可还原性具有正相关性.这种表面不同位点的还原性可以直接通过对空穴形成能的计算获得,降低表面氧空穴的生成能将有利于提高CO氧化的活性.催化设计的终极目标是在对催化活性位点的本质及反应机理深入认识的基础上在原子层面上对催化剂进行可控设计,从而实现催化剂材料的高效、经济的利用.本文研究表明离子对活性位点是Co3O4纳米晶催化CO氧化反应的活性位点,其中阳离子负责对CO的吸附,阴离子则负责CO2的形成过程,这种协同作用实现了Co3O4纳米晶的高反应活性.我们相信,寻找有效的方法在催化剂表面增加离子对位点活性中心的数目是一种实现高性能催化剂设计的途径.  相似文献   

5.
采用液相沉淀法制备了Co_3O_4催化剂,并对其进行还原-氧化预处理制得Co_3O_4-RO。通过XRD、N_2-physisorption、Raman、H_2-TPR、XPS和O_2-TPD等技术对催化剂进行表征,在连续流动微反应装置上考察了催化剂催化分解N_2O性能。结果表明,经过还原-氧化预处理,与Co_3O_4催化剂相比,Co_3O_4-RO结晶度变差,晶粒粒径减小,尤其是尖晶石结构重构过程削弱了Co-O键,增强了催化剂表面的氧物种脱附能力,降低了催化分解N_2O反应的活化能,因而显著提高了催化剂的催化活性。同时,Co_3O_4-RO对原料气中的O_22%(体积分数)和H_2O 2. 3%(体积分数)表现出较强的耐受性。  相似文献   

6.
用密度泛函理论B3LYP方法详细研究了 催化CO氧化反应的机理. 计算结果表明, O2分子在 和 上吸附能相差不大, 而CO分子在 上吸附要比在 上弱得多. 催化CO氧化反应共有四条反应途径. 最可能反应通道为CO插入 中的Ag—O键形成中间体[Ag—AgC(O—O)O]-, 然后直接分解形成产物CO2和 , 或另一分子CO进攻中间体[Ag—AgC(O—O)O]-形成两分子产物CO2和 . 在动力学上最难进行的反应通道为经历碳酸根双银中间体, 需要克服约0.24 eV的能垒. 催化CO氧化反应活性要高于 .  相似文献   

7.
采用共沉淀法制备碱土金属掺杂的钴基尖晶石型复合金属氧化物M_xCo_(3-x)O_4(M=Mg、Ca、Sr、Ba;x=0、0.1、0.3、0.5、0.7、0.9)催化剂,使用XRD、SEM、氮吸附、H_2-TPR、O_2-TPD-M S和XPS等技术对催化剂进行表征,并在固定床微型反应器中评价了M_xCo_(3-x)O_4催化剂催化分解N_2O的活性,研究了碱土金属掺杂对其催化性能的影响。结果表明,碱土金属掺杂后,M_(x )Co_(3-x)O_4催化剂颗粒粒径减小,比表面积增大,表面吸附氧和Co~(2+)数量增加,氧化还原性能增强;在反应气组成为0.68%N_2O,3%O_2,Ar为平衡气的条件下,碱土金属锶掺杂、掺杂量x为0.7时,Sr_(0.7)Co_(2.3)O_4的N_2O分解催化活性最高,N_2O转化率为10%和95%时所需的温度分别为312和451℃。  相似文献   

8.
采用了不同沉淀剂(K_2CO_3、Na_2CO_3、NaOH、NaHCO_3)制备了一系列Co_3O_4氧化物催化剂.通过XRD、XPS、BET、H2-TPR、O_2-TPD表征手段,探究了催化剂物相结构和氧化还原性能对N_2O催化分解性能的影响.研究表明,以K_2CO_3为沉淀剂制备的Co_3O_4催化剂具有优越的氧化还原性能.此外,较低结晶度有助于提高催化剂的催化性能,催化剂表面物种与其沉淀剂相关:丰富的表面Co物种促进催化活性,较多氧空位有利于催化剂表面的电子传递和氧气的脱附.以K_2CO_3为沉淀剂制备的Co_3O_4催化剂表现出最佳的N_2O催化分解活性,在450℃达到90%以上的转化率.  相似文献   

9.
采用了不同沉淀剂(K2 CO3、Na2 CO3、NaOH、NaHCO3)制备了一系列 Co3 O4氧化物催化剂。通过 XRD、XPS、BET、H2-TPR、O2-TPD 表征手段,探究了催化剂物相结构和氧化还原性能对 N2 O 催化分解性能的影响。研究表明,以 K2 CO3为沉淀剂制备的 Co3 O4催化剂具有优越的氧化还原性能。此外,较低结晶度有助于提高催化剂的催化性能,催化剂表面物种与其沉淀剂相关:丰富的表面 Co 物种促进催化活性,较多氧空位有利于催化剂表面的电子传递和氧气的脱附。以 K2 CO3为沉淀剂制备的 Co3 O4催化剂表现出最佳的 N2 O 催化分解活性,在450℃达到90%以上的转化率。  相似文献   

10.
纯Fe2O3表面活性位点较少具有较低的催化活性限制了其在多相芬顿催化体系中的应用。通常采用元素掺杂、贵金属负载以及与其它化合物质复合等改性措施来提升催化活性,然而这些措施存在催化剂制备复杂,制备成本高以及催化剂的精细结构难以精准控制等问题。因此,本文提出在α-Fe2O3表面引入氧空位缺陷构筑双活性位点(Fe2+和氧空位)用于促进H2O2分解提高降解污染物降解效率。实验结果发现α-Fe2O3-x-330/H2O2体系具有较宽的pH使用范围(pH=2~10)。当pH=4时,罗丹明B的降解速率常数为0.834 h-1,而且催化剂具有磁性,易回收重复使用。催化机理研究表明氧空位缺陷α-Fe2O3-x催化剂的氧空位和Fe2+两种活性位点均可促进H2O2分解,而且氧空位的引入有利于污染物在催化剂表面的吸附进一步提高催化性能。  相似文献   

11.
氧化亚氮(N_2O)是一种性能独特优越的新型绿色推进剂,分解后可以生成高温富氧燃气,实现自增压式多种模式推进,是小卫星推进系统理想的推进剂选择,因而具有广阔的应用前景.在标准状态下,N_2O热分解反应活化能为250 k J/mol,致使其非催化热分解温度高达600 ℃,显然小卫星的能源系统无法满足,必须采取催化分解的手段,改变反应路径、降低反应活化能,使N_2O能够在较低的温度下分解.有关N_2O分解催化剂的报道很多,如纯相或复合氧化物、金属交换分子筛和负载贵金属等,但是这些催化剂仍然存在活性较低等问题,难以满足N_2O推进系统的应用需求.氧化钛是光催化和金催化常用的催化剂,经还原后能够形成氧缺陷,可以为涉氧反应提供电子,而N_2O分解会产生大量氧,氧脱附是其速率控制步骤,因而以氧化钛为载体,有望促进氧脱附及N_2O分解.与此同时,氧化铱具有较高的N_2O分解活性,而且与金红石型氧化钛晶格相似,相似的晶格参数可能会促进其在氧化钛表面的分散,进一步提高N_2O分解性能.基于此,本文以金红石氧化钛(r-TiO_2)为载体,采用匀相沉积沉淀法制备了不同载量的金红石氧化钛负载铱催化剂(Ir/r-TiO_2),并制备了锐钛矿型氧化钛、混合晶相P25和γ-Al_2O_3负载铱催化剂作为对比.通过活性测试我们发现,Ir/r-TiO_2催化剂显示了非常优异的N_2O分解活性,N_2O转化率明显高于参比催化剂,在250℃就能够开始分解,在300 ℃可以分解完全,而且当Ir含量降低到0.1%时,催化剂仍然保持与2 wt%Ir/γ-Al_2O_3相当的催化活性.随后我们采取多种表征手段对Ir/r-TiO_2的活性本质和N_2O分解机理进行了探究.首先利用BET、HAADF-STEM和XRD对催化剂的基本物性进行了测试,发现Ir/r-TiO_2具有较低的比表面积,但金属铱在金红石氧化钛表面表现出较高的分散度,平均粒径仅为1.25 nm.采用H-2-TPR和O 1s XPS考察了催化剂的电子特性和还原特性,发现Ir/r-TiO_2催化剂上高分散的Ir与氧的结合能较弱,易于还原,有助于N_2O的分解和生成氧的脱附.进一步采用原位N_2O-DRIFT对N_2O分解过程进行了研究,发现了桥式过氧物种,并据此提出了N_2O在Ir/r-TiO_2催化剂上的分解机理.  相似文献   

12.
不同晶型结构的ZrO2在CO加氢制异丁烯反应中表现出不同的催化性能。尽管单斜相ZrO2在合成气制异丁烯反应中具有最优异的催化性能,但是对于其异构化活性位仍缺乏深入认识。通过研究ZrO2晶型结构对反应性能的影响差异,有利于深入认识ZrO2催化剂上合成气制异丁烯反应的关键影响因素。因此,本研究制备了一系列不同晶型结构的ZrO2催化剂,研究了它们在结构性质及催化CO加氢制异丁烯反应性能方面的差异。相对于四方相和无定型ZrO2,在单斜相ZrO2催化剂表面,有较多的配位不饱和的Zr位点和O位点。配位不饱和的Zr位点是CO吸附活化的位点,有利于CO的转化。而较多的不饱和配位的O位点,为异丁烯的生成提供了更多的碱性位。此外,在单斜相ZrO2催化剂表面,配位不饱和的Zr位点和O位点的存在,抑制了电子向反应中生成的甲酸盐物种转移,因此,甲酸盐物种在催化剂表面吸附较弱,有利于CO加氢生成异丁烯。  相似文献   

13.
用密度泛函理论B3LYP方法详细研究了Ag_2~-催化CO氧化反应的机理.计算结果表明,O2分子在Ag_2~-和Au_2~-上吸附能相差不大,而CO分子在Ag_2~-上吸附要比在Ag_2~-上弱得多.Ag_2~-催化CO氧化反应共有四条反应途径.最可能反应通道为CO插入Ag2O_2~-中的Ag—O键形成中间体[Ag—AgC(O—O)O]-,然后直接分解形成产物CO2和Ag2O-,或另一分子CO进攻中间体[Ag—AgC(O—O)O]-形成两分子产物CO2和Ag_2~-.在动力学上最难进行的反应通道为经历碳酸根双银中间体,需要克服约0.24eV的能垒.Ag_2~-催化CO氧化反应活性要高于Au_2~-.  相似文献   

14.
以十六烷基三甲基溴化胺(CTAB)为模板剂,通过调变CTAB浓度水热合成了氧化钴前驱体,焙烧制得棒状形貌的Co_3O_4,在其表面浸渍K_2CO_3溶液制得K改性的Co_3O_4催化剂,用于N_2O分解。用X射线衍射(XRD)、N_2物理吸附(BET)、扫描电镜(SEM)、X射线光电子能谱(XPS)、H_2程序升温还原(H_2-TPR)和O_2程序升温脱附(O_2-TPD)等技术对催化剂进行了表征,考察了CTAB/钴及尿素/钴物质的量比等制备参数对Co_3O_4催化分解N_2O活性的影响。结果表明,CTAB浓度为0.05 mol/L、CTAB/钴离子物质的量比为1、尿素/钴离子物质的量比为4时,所制备的Co_3O_4催化剂具有较高的N_2O分解活性,而K改性可以进一步提升其催化性能。K改性的Co_3O_4在有氧有水气氛中400℃下进行N_2O分解反应,50 h后N_2O转化率仍保持在91%以上。  相似文献   

15.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

16.
氧气在Cu_2O(111)表面的分解效率是影响铜催化丙烯环氧化反应的关键步骤,而过渡金属Ru的掺杂对其分解效率的提高有很大的帮助,但影响本质还不是十分清楚.本文利用库仑校正的密度泛函(DFT+U)方法研究了氧气分子在清洁Cu_2O(111)表面的吸附分解机制,在此基础上探究了过渡金属助剂钌原子对氧气在Cu_2O(111)表面的吸附与分解的影响.结果显示,氧气分子在有钌助剂存在的Cu_2O(111)表面的吸附显著增强;氧气分子在Cu_2O(111)表面分解需要的活化能较高,钌原子助剂的加入可以显著降低氧气分解活化能,促进氧气的分解;当钌原子数量增加到两个及以上时,氧气倾向于自发分解.  相似文献   

17.
CaO和NaCl焙烧混合稀土精矿过程中的分解反应   总被引:5,自引:0,他引:5  
用XRD和TG-DTA热分析技术, 研究了含独居石和氟碳铈镧矿的混合稀土精矿在100~1000 ℃焙烧过程中, 添加CaO, NaCl时, REPO4和REFCO3的分解反应. 研究结果表明: 不添加CaO和NaCl时, 仅在377~450 ℃范围内存在REFCO3的分解反应, 其产物是REOF, RE2O3, 以及Ce2O3进一步的氧化产物CeO2, 而REPO4不分解; 添加CaO后在660~750 ℃之间, CaO有3种分解作用: (1) CaO分解REPO4, 其产物是RE2O3和Ca3(PO4)2. (2) CaO分解REOF, 其产物是RE2O3和CaF2. (3) CaO和REOF的分解产物CaF2共同作用分解REPO4, 其分解产物为RE2O3, Ca5F(PO4)3; 添加CaO, NaCl后, 混合精矿的分解率明显提高, NaCl的作用是为反应体系提供了液相, 促进了固相反应物间的传质过程, 加快了反应速度. 与此同时NaCl还可能参加了CaO分解REPO4的反应.  相似文献   

18.
采用B3LYP/cc-pVTZ理论水平系统研究了Ca+离子催化N2O+CO→N2+CO2反应的微观机理.反应分两步进行:第一步Ca+夺取N2O中的O原子有两条反应通道,其中优势通道为Ca+金属离子与N2O分子中O作用,形成线性分子复合物,活化N2O分子中的N-O键,之后的反应路径为O-N键断裂机理;第二步为CaO+金属...  相似文献   

19.
以稻壳(RH)、梧桐叶(PTL)和木屑(SD)为对象,利用携带流脱硝实验装置,研究了生物质种类、再燃反应温度(t2)、再燃区化学计量比(SR2)、喷氨位置、水蒸气以及添加剂等对生物质高级再燃(AR)脱硝效率的影响,分析了高级再燃过程中钾和氯等元素的释放特性。结果表明,在t2为850~1 150℃,随着t2升高,生物质高级再燃脱硝效率呈现先上升后下降的趋势。在SR2为0.5~1.0,随着SR2增加,稻壳高级再燃脱硝效率呈现先增加后降低的趋势。停留时间为0.4~1.0 s,氨气添加位置对稻壳高级再燃脱硝效率有一定的影响,但其效果并不明显。烟气中水蒸气含量(0~15%)可提高稻壳高级再燃的脱硝效率,而且可拓宽脱硝温度窗口。不同再燃温度下,4%水蒸气含量模拟烟气的脱硝效率最大。添加剂(Fe2O3、KCl、NaCl和CaO)对稻壳高级再燃脱硝均有促进作用,其中,Fe2O3促进作用最为显著。在稻壳高级再燃过程中,氯和钾元素释放率分别达到95.0%和59.8%以上。  相似文献   

20.
用水热法和共沉淀法分别制备了Nd-Co_3O_4催化剂,催化分解N_2O。其中,水热法制备的Nd-Co_3O_4催化活性较高。在不同组成的Nd-Co_3O_4中,优化出了较高活性的0.01Nd-Co_3O_4催化剂,在其表面浸渍K_2CO_3溶液制备K改性催化剂(K/Nd-Co_3O_4)。用X射线衍射(XRD)、N_2物理吸附、扫描电镜(SEM)、X射线光电子谱(XPS)、程序升温还原(H_2-TPR)、O_2程序升温脱附(O_2-TPD)等技术表征催化剂结构。结果表明,Nd-Co_3O_4和K改性催化剂均为尖晶石结构;K改性弱化了催化剂表面Co-O键,有利于表面氧的脱除,提高了催化剂活性。有氧有水气氛350℃连续反应40 h,K/Nd-Co_3O_4催化剂上的N_2O分解率超过90%,稳定性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号