首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
基于密度泛函理论广义梯度近似第一性原理计算的方法,系统研究了Ca掺杂ZnO氧化物的晶格结构和电子结构,在此基础上分析了其电学性能.结果表明,Ca掺杂ZnO晶胞减小.Ca掺杂氧化物仍为直接带隙半导体材料,带宽达1.5 eV.掺杂体系费米能级附近的能带主要由Cas态、Cap态、Znp态和Op态电子构成,其中p态电子对价带态贡献最大,且Cas态、Znp态和Op态电子之间存在着更强的相互作用.Ca掺杂ZnO氧化物费米能级EF附近载流子浓度增加,运动速度减小,有效质量增加,导电机构为Cas态、Znp态和Op态电子在价带与导带的跃迁,具有更高的电导率,较高的Seebeck系数和综合电性能.  相似文献   

2.
张颖  王景芹  康慧玲 《人工晶体学报》2017,46(11):2147-2153
AgSnO2触头材料中的SnO2近乎绝缘,为了提高触头材料的电性能提出了稀土材料La、Ce、Y和In共掺杂的方法.采用基于密度泛函的第一性原理对SnO2以及单掺杂稀土元素的SnO2和共掺稀土元素和In的SnO2晶胞进行能带和态密度的计算.结果表明:掺杂后的材料仍旧是直接带隙半导体材料,都具有热稳定性,共掺杂可以进一步使得导带底、价带顶向费米能级附近移动,进而窄化带隙;共掺杂比单掺的电子有效质量小,电导率大,其中Y和In共掺杂的导电性最好.共掺杂比单掺稀土元素更能提高AgSnO2触头材料的导电性,为触头材料的发展提供了理论依据.  相似文献   

3.
采用密度泛函理论研究了Ce、N共掺杂锐钛矿相TiO2的电子结构、态密度和光学特性.计算结果表明,不同位置Ce、N共掺杂对TiO2的杂质形成能、带隙和光学性质是有影响的.共掺杂带隙比单掺杂TiO2的更窄,导致电子从杂质能级激发到导带的概率增大,这会提高共掺杂TiO2的光量子效率.Ce、N共掺杂后TiO2吸收带边红移至可见光区的更远处,光学吸收系数比单掺杂时更强,这主要是由Ce、N共掺杂的协同效应引起的.带边位置的计算结果表明掺杂TiO2的强氧化还原能力得到保持.因此,Ce、N共掺后TiO2在可见光区具有良好的光催化性能.  相似文献   

4.
采用密度泛函理论下的平面波赝势方法,建立了未掺杂ZnO和两种Gd掺杂浓度的ZnO模型.结构优化后,对各个模型的电子结构、态密度及吸收光谱进行了计算,其中Gd掺杂模型分别采用电子自旋极化与电子非自旋极化两种处理方式.结果表明:电子非自旋极化条件下,Gd掺杂在ZnO禁带中引入杂质能级,ZnO带隙变宽,导致相应的吸收光谱发生蓝移;考虑电子自旋极化时,Gd掺杂后的体系具有铁磁性,自旋电子在无序磁畴贡献的局部磁场内发生自旋能级分裂,使得带隙变窄,相应吸收光谱发生红移.  相似文献   

5.
运用第一性原理密度泛函理论,计算了S单掺及S和过渡金属X(Hf、Ta、W)共掺锐钛矿相TiO2后的电子结构和光学性质.计算结果表明,S单掺及S和X(Hf、Ta、W)共掺杂锐钛矿TiO2后,带隙变窄,表明掺杂后的体系导电性能增强,其中Ta、W与S共掺后,费米能级穿过导带,表现出n型半导体特征;光学性质结果表明:掺杂后各体系的吸收光谱吸收带边均发生红移,S-Ta共掺和S-W共掺体系红移程度最大,并且在可见光区域出现吸收峰,S-W共掺体系的吸收峰最大,说明了该体系的光催化功能较强.各掺杂体系的反射率主峰均向低能方向移动,共掺移动幅度更大,且S-W共掺体系的反射系数在可见光区最大.各共掺体系的静态折射率依次增大,其中S-Hf共掺体系静态折射率在各体系中最小.  相似文献   

6.
邹江  李平  谢泉 《人工晶体学报》2021,50(11):2036-2044
采用基于密度泛函理论的平面波超软赝势方法对纯AlN、(La,Y)单掺杂以及La-Y共掺杂AlN 超胞进行几何结构优化,计算了稀土元素(La,Y)掺杂前后体系的能带结构、态密度和光学性质。结果表明:未掺杂的AlN是直接带隙半导体,带隙值为Eg=4.237 eV,在费米能级附近,态密度主要由Al-3p、N-2s电子轨道贡献电子,光吸收概率大,能量损失较大;掺杂后使得能带结构性质改变,带隙值降低,能带曲线变密集,总态密度整体下移;在光学性质中,稀土元素掺杂后均提高了静态介电常数、光吸收性能,增强了折射率和反射率,减小了电子吸收光子概率及能量损失;其中La-Y共掺体系变化得较为明显。  相似文献   

7.
采用密度泛函理论下的平面波超软赝势方法和杂化泛函理论下的模守恒赝势方法,分别计算了未掺杂ZnO和两种La掺杂浓度的ZnO模型,其中对较高La掺杂浓度的计算还设置了两种不同的掺杂位置.结构优化后,首先通过计算形成能、系统总能量和电荷布居值,对掺杂后体系的稳定性进行了分析;而后结合自旋基态能量与自旋电子态密度对掺杂体系的磁性状态进行了说明;最后通过计算得到的电子结构及吸收光谱讨论了La掺杂量对ZnO光电性能的影响.结果表明:随La掺杂量增加,ZnO体系稳定性有所降低;La掺杂ZnO无磁性,电子结构不会受到自旋能级分裂的影响;与纯ZnO相比,La掺杂ZnO的禁带宽度增大,吸收光谱蓝移,然而通过控制La浓度与掺杂方式可以有效增强La-5d与Zn-4s电子态的交换关联作用而减小ZnO的最小光学带隙,提高ZnO对可见光的吸收系数,使光生空穴-电子对有效分离的影响.  相似文献   

8.
采用基于密度泛函理论(DFT)的第一性原理对La和Ce单掺杂及La-Ce共掺杂锐钛矿TiO2前后的晶格参数、能带结构、态密度以及光吸收特性进行了计算。结果表明:掺杂后导致锐钛矿TiO2晶胞膨胀,晶格发生明显畸变并减小了锐钛矿相TiO2的禁带宽度;La-Ce共掺杂后引入新的杂质能级,导带下移,TiO2的光吸收带边发生明显红移,在紫外区和可见光区的吸收系数增大,有效提高了TiO2的光催化效率。  相似文献   

9.
基于第一性原理方法研究了C单掺杂SnO2和C-X(X=Y,Zr)共掺杂SnO2的能带结构、态密度以及分电荷分布.结果表明:C掺杂、C-Y、C-Zr共掺杂SnO2的带隙值分别为1.109 eV、1.86 eV、1.214 eV,较超胞结构的带隙值降低,有利于电子的跃迁;C-Y共掺杂SnO2的导带底部有3条杂质能级分离出来,C-Zr共掺杂SnO2的能带价带顶部能级中有3条能级分离出来,其中1条能级贯穿费米能级;C-Y,C-Zr共掺杂SnO2的态密度中在低能区会产生1个态密度峰值,部分态密度的峰值由Y、Zr的d轨道贡献;C-Y、C-Zr共掺杂SnO2会打破SnO2电子平衡状态,致使电荷的重新分布.  相似文献   

10.
ZnO能带及态密度的密度泛函理论研究   总被引:1,自引:0,他引:1  
本文采用基于密度泛函理论框架下第一性原理的平面波赝势方法,并采用局域密度近似(LDA)理论和ABINIT软件对ZnO电子结构进行了计算.得到了ZnO的能带和态密度曲线.研究表明,ZnO的价带基本上可以分为三个区域,即下价带区、上价带区和位于-18.1 eV处的宽度为1.1 eV的价带;导带部分主要是由Zn的4s态贡献的,O的2p态在该区域内具有微弱的贡献;ZnO是一种直接宽禁带半导体,导带底和价带顶位于布里渊区中心处,带隙为0.9 eV,相对比较该结果优于一些文献给出的计算值.  相似文献   

11.
本文采用基于密度泛函理论的第一性原理计算了不同浓度Nb掺杂ZnO的能带结构及性能,并对本征ZnO、Al掺杂ZnO(AZO)和Nb掺杂ZnO(NZO)的模拟结果进行对比分析。结果表明:(1)NZO和AZO的带隙值均低于本征ZnO的带隙值,掺杂浓度(原子数分数)同为6.25%的NZO的带隙值低于AZO的带隙值。随着Nb掺杂浓度增高,NZO的导带底明显降低,态密度峰值降低,且Nb-4d态电子占据了费米能级的主要量子态。(2)随着掺杂浓度的增加,NZO和AZO吸收峰和介电函数峰均降低,且向低能区移动,其中,NZO吸收峰向低能区移动更明显,且介电函数虚部分别在0.42 eV和34.29 eV出现新的峰,主要是价带中Nb-4d和Nb-5p电子能级跃迁所致。掺杂浓度同为6.25%的NZO的静介电常数大于AZO的静介电常数,表明NZO极化能力更强,NZO可以更有效改善ZnO的光电性能。随着Nb掺杂浓度增加,NZO的吸收系数和介电函数虚部强度增加且向高能区移动。NZO的模拟结果为高价态元素Nb掺杂ZnO的实验研究工作及实际应用提供了理论参考。  相似文献   

12.
采用气相反应制备了ZnO和ZnO∶Co微晶,并通过热释光研究了材料中的电子陷阱能级(施主能级),采用微波介电谱研究了材料的光生电子瞬态过程.发现纯ZnO热释光谱有两个峰,分别为-183 ℃和-127 ℃,说明存在两个电子陷阱能级;而ZnO∶Co中热释光信号很弱,只有纯ZnO的十分之一.微波介电谱研究表明,由于电子陷阱对导带电子的驰豫作用,纯ZnO材料导带光电子的衰减为一级指数过程,寿命为802 ns.ZnO∶Co微晶体的最大微波介电谱强度低于纯ZnO晶体的五分之一,电子陷阱密度较小,其光生电子快速衰减,过程仅为10~20 ns.结果说明Co掺杂具有明显的抑制电子陷阱能级生成的作用.  相似文献   

13.
利用第一性原理密度泛函理论,计算了Sm-C共掺SnO2体系的能带结构、能态密度、光学性质.计算结果表明:Sm-C近邻共掺体系的晶胞的结构比较稳定.在电子结构方面,共掺体系的禁带宽度值最小,表明电子从价带激发到导带所需的能量最小.在光学性质方面,掺杂体系都发生了红移,其中Sm-C共掺体系的红移程度最大,增强了对可见光的响应范围;在可见光区,掺杂体系的反射系数、静态介电常数、静态折射率的值都大于纯SnO2,且Sm-C共掺杂体系的值最大.  相似文献   

14.
针对AgSnO2触头材料存在的不足,采用基于密度泛函理论的第一性原理对SnO2、Ni单掺杂、Mo单掺杂以及Ni-Mo共掺杂SnO2材料进行了电性能与力学性质的研究,计算了各体系的形成能、能带结构、态密度、弹性常数等各项参数。结果表明,掺杂后的材料可以稳定存在,且仍为直接带隙半导体材料。与未掺杂相比,掺杂后体系的能带结构带隙值减少,其中Ni-Mo共掺杂时的带隙值最小,载流子跃迁所需能量减少,极大地改善了SnO2的电性能;由弹性常数计算了剪切模量、体积模量、硬度等参数,其中Ni-Mo共掺杂时的硬度大幅降低,韧性增强,有利于AgSnO2触头材料后续加工成型,且其普适弹性各向异性指数最小,不易形成裂纹。综合各项因素,Ni-Mo共掺杂能够很好地改善SnO2的性能,为触头材料的发展提供了理论指导。  相似文献   

15.
基于密度泛函理论的第一性原理平面波超软赝势计算方法,计算分析了纯金红石相TiO2,Ce、Nd、Eu和Gd四种稀土元素单掺杂金红石相TiO2,以及与N共掺金红石相TiO2的晶体结构、电子结构和光学性质.由掺杂前后的结果分析发现,掺杂后晶胞膨胀,晶格发生畸变;费米能级上移进入导带,导带底部引入杂质能级,提高了掺杂体系的电导率和对可见光的响应;光学性质、介电函数和吸收谱掺杂体系峰值比纯TiO2小,反射谱和能量损耗谱出现红移现象.  相似文献   

16.
采用基于密度泛函理论的第一性原理赝势平面波方法对Sc、Ce单掺和共掺后CrSi2的几何结构、电子结构、复介电函数、吸收系数和光电导率进行了计算。结果表明:Sc、Ce掺杂CrSi2的晶格常数增大,带隙变小。本征CrSi2的带隙为0.386 eV,Sc、Ce单掺及共掺CrSi2的禁带宽度分别减小至0.245 eV、0.232 eV、0.198 eV,费米能级均向低能区移动进入价带。由于Sc的3d态电子和Ce的4f态电子的影响,Sc、Ce掺杂的CrSi2在导带下方出现了杂质能级。掺杂后的CrSi2介电函数虚部第一介电峰峰值增加且向低能方向移动,说明Sc、Ce掺杂使得CrSi2在低能区的光跃迁强度增强,Sc-Ce共掺时更明显。Sc、Ce掺杂的CrSi2吸收边在低能方向发生红移,在能量大于21.6 eV特别是在位于31.3 eV的较高能量附近,本征CrSi2几乎不吸收光子,Sc单掺和Sc-Ce共掺CrSi2吸收光子的能力有所增强,并在E=31.3 eV附近形成了第二吸收峰。说明掺杂Sc、Ce改善了CrSi2对红外和较高能区光子的吸收。在小于3.91 eV的低能区掺杂后的CrSi2光电导率增加。在20.01 eV<E<34.21 eV时,本征CrSi2光电导率为零,但Sc、Ce掺杂后的体系不为零,掺杂拓宽了CrSi2的光响应范围。研究结果为CrSi2基光电器件的应用与设计提供了理论依据。  相似文献   

17.
采用第一性原理方法,对本征Mg2Si以及K和Ti掺杂Mg2Si的几何结构、电子结构和光学性质进行计算分析。计算结果表明本征Mg2Si是带隙值为0.290 eV的间接带隙半导体材料,K掺杂Mg2Si后,Mg2Si为p型半导体,电子跃迁方式由间接跃迁变为直接跃迁,Ti掺杂Mg2Si后,Mg2Si为n型半导体,仍然是间接带隙。K、Ti掺杂后的静介电常数ε1(0)从20.52分别增大到53.55、69.25,使得掺杂体系对电荷的束缚能力增强。掺杂后,吸收谱和光电导率均发生红移现象,这有效扩大了对可见光的吸收范围,此外可见光区的吸收系数、反射系数以及光电导率都减小,导致透射能力增强,明显改善了Mg2Si的光学性质。  相似文献   

18.
刘远全 《人工晶体学报》2017,46(9):1773-1777
本文基于第一性原理的方法研究了Y、Zr、Nb在Mo位掺杂单层MoS2的能带结构和态密度.研究发现:Y、Zr、Nb三种杂质在Mo位掺杂使杂质原子附近的键长发生畸变,畸变最大的是Y掺杂体系;Y、Zr、Nb的掺杂改变了单层MoS2能能带结构,使掺杂体系向导体转变;对于Y、Zr、Nb共掺杂体系,Y、Zr共掺杂增强了单层MoS2导电性能;Y、Nb共掺杂单层MoS2的费米能级穿过杂质能级,此处的能级处于半满状态,容易成为电子的俘获中心;Zr、Nb共掺杂体系的禁带中出现了多条杂质能级,同时导带能量上移;Y、Zr、Nb共掺杂可以很大程度改变单层MoS2材料的电子结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号