首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove a Freidlin-Wentzell large deviation principle for general stochastic evolution equations with small perturbation multiplicative noises. In particular, our general result can be used to deal with a large class of quasi-linear stochastic partial differential equations, such as stochastic porous medium equations and stochastic reaction-diffusion equations with polynomial growth zero order term and p-Laplacian second order term.  相似文献   

2.
In this paper we discuss two-stage diagonally implicit stochastic Runge-Kutta methods with strong order 1.0 for strong solutions of Stratonovich stochastic differential equations. Five stochastic Runge-Kutta methods are presented in this paper. They are an explicit method with a large MS-stability region, a semi-implicit method with minimum principal error coefficients, a semi-implicit method with a large MS-stability region, an implicit method with minimum principal error coefficients and another implicit method. We also consider composite stochastic Runge-Kutta methods which are the combination of semi-implicit Runge-Kutta methods and implicit Runge-Kutta methods. Two composite methods are presented in this paper. Numerical results are reported to compare the convergence properties and stability properties of these stochastic Runge-Kutta methods.  相似文献   

3.
In this paper, we study the existence-uniqueness and large deviation estimate for stochastic Volterra integral equations with singular kernels in 2-smooth Banach spaces. Then we apply them to a large class of semilinear stochastic partial differential equations (SPDE), and obtain the existence of unique maximal strong solutions (in the sense of SDE and PDE) under local Lipschitz conditions. Moreover, stochastic Navier-Stokes equations are also investigated.  相似文献   

4.
The purpose of this paper is to establish Bogoliubov averaging principle of stochastic reaction–diffusion equation with a stochastic process and a small parameter. The solutions to stochastic reaction–diffusion equation can be approximated by solutions to averaged stochastic reaction–diffusion equation in the sense of convergence in probability and in distribution. Namely, we establish a weak law of large numbers for the solution of stochastic reaction–diffusion equation.  相似文献   

5.
The Freidlin-Wentzell large deviation principle is established for the distributions of stochastic evolution equations with general monotone drift and small multiplicative noise. As examples, the main results are applied to derive the large deviation principle for different types of SPDE such as stochastic reaction-diffusion equations, stochastic porous media equations and fast diffusion equations, and the stochastic p-Laplace equation in Hilbert space. The weak convergence approach is employed in the proof to establish the Laplace principle, which is equivalent to the large deviation principle in our framework.  相似文献   

6.
We propose a new stochastic algorithm for the solution of unconstrained vector optimization problems, which is based on a special class of stochastic differential equations. An efficient algorithm for the numerical solution of the stochastic differential equation is developed. Interesting properties of the algorithm enable the treatment of problems with a large number of variables. Numerical results are given.  相似文献   

7.
The aim of this paper is to extend the usual framework of SPDE with monotone coefficients to include a large class of cases with merely locally monotone coefficients. This new framework is conceptually not more involved than the classical one, but includes many more fundamental examples not included previously. Thus our main result can be applied to various types of SPDEs such as stochastic reaction-diffusion equations, stochastic Burgers type equation, stochastic 2-D Navier-Stokes equation, stochastic p-Laplace equation and stochastic porous media equation with non-monotone perturbations.  相似文献   

8.
《随机分析与应用》2013,31(2):419-441
We consider the stochastic model of water pollution, which mathematically can be written with a stochastic partial differential equation driven by Poisson measure noise. We use a stochastic particle Markov chain method to produce an implementable approximate solution. Our main result is the annealed law of large numbers establishing convergence in probability of our Markov chains to the solution of the stochastic reaction-diffusion equation while considering the Poisson source as a random medium for the Markov chains.  相似文献   

9.
10.
In this paper we prove the local existence and uniqueness of solutions for a class of stochastic fractional partial differential equations driven by multiplicative noise. We also establish that for this class of equations adding linear multiplicative noise provides a regularizing effect: the solutions will not blow up with high probability if the initial data is sufficiently small, or if the noise coefficient is sufficiently large. As applications our main results are applied to various types of SPDE such as stochastic reaction–diffusion equations, stochastic fractional Burgers equation, stochastic fractional Navier–Stokes equation, stochastic quasi-geostrophic equations and stochastic surface growth PDE.  相似文献   

11.
We prove a large deviation principle result for solutions of abstract stochastic evolution equations perturbed by small Lévy noise. We use general large deviations theorems of Varadhan and Bryc coupled with the techniques of Feng and Kurtz (2006) [15], viscosity solutions of integro-partial differential equations in Hilbert spaces, and deterministic optimal control methods. The Laplace limit is identified as a viscosity solution of a Hamilton-Jacobi-Bellman equation of an associated control problem. We also establish exponential moment estimates for solutions of stochastic evolution equations driven by Lévy noise. General results are applied to stochastic hyperbolic equations perturbed by subordinated Wiener process.  相似文献   

12.
A large deviation principle is derived for a class of stochastic reaction-diffusion partial differential equations with slow-fast components. The result shows that the rate function is exactly that of the averaged equation plus the fluctuating deviation which is a stochastic partial differential equation with small Gaussian perturbation. This result also confirms the effectiveness of the approximation of the averaged equation plus the fluctuating deviation to the slow-fast stochastic partial differential equations.  相似文献   

13.
We rigorously prove a central limit theorem for neural network models with a single hidden layer. The central limit theorem is proven in the asymptotic regime of simultaneously (A) large numbers of hidden units and (B) large numbers of stochastic gradient descent training iterations. Our result describes the neural network’s fluctuations around its mean-field limit. The fluctuations have a Gaussian distribution and satisfy a stochastic partial differential equation. The proof relies upon weak convergence methods from stochastic analysis. In particular, we prove relative compactness for the sequence of processes and uniqueness of the limiting process in a suitable Sobolev space.  相似文献   

14.
This study focuses on the development of reduced order models for stochastic analysis of complex large ordered linear dynamical systems with parametric uncertainties, with an aim to reduce the computational costs without compromising on the accuracy of the solution. Here, a twin approach to model order reduction is adopted. A reduction in the state space dimension is first achieved through system equivalent reduction expansion process which involves linear transformations that couple the effects of state space truncation in conjunction with normal mode approximations. These developments are subsequently extended to the stochastic case by projecting the uncertain parameters into the Hilbert subspace and obtaining a solution of the random eigenvalue problem using polynomial chaos expansion. Reduction in the stochastic dimension is achieved by retaining only the dominant stochastic modes in the basis space. The proposed developments enable building surrogate models for complex large ordered stochastically parametered dynamical systems which lead to accurate predictions at significantly reduced computational costs.  相似文献   

15.
In this work, we establish the unique global solvability of the stochastic two dimensional viscoelastic fluid flow equations, arising from the Oldroyd model for the non-Newtonian fluid flows perturbed by multiplicative Gaussian noise. A local monotonicity property of the linear and nonlinear operators and a stochastic generalization of the Minty–Browder technique are exploited in the proofs. The Laplace principle for the strong solution of the stochastic system is established in a suitable Polish space using a weak convergence approach. The Wentzell–Freidlin large deviation principle is proved using the well known results of Varadhan and Bryc. The large deviations for shot time are also considered. We also establish the existence of a unique ergodic and strongly mixing invariant measure for the stochastic system with additive Gaussian noise, using the exponential stability of strong solutions.  相似文献   

16.
We consider large systems of stochastic interacting particles through discontinuous kernels which has vision geometrical constrains. We rigorously derive a Vlasov–Fokker–Planck type of kinetic mean-field equation from the corresponding stochastic integral inclusion system. More specifically, we construct a global-in-time weak solution to the stochastic integral inclusion system and derive the kinetic equation with the discontinuous kernels and the inhomogeneous noise strength by employing the 1-Wasserstein distance.  相似文献   

17.
We establish a large deviation principle for the solutions of stochastic partial differential equations for nonlinear vibration of elastic panels (also called stochastic nonlinear beam equations).  相似文献   

18.
We introduce a PDE approach to the large deviation principle for Hilbert space valued diffusions. It can be applied to a large class of solutions of abstract stochastic evolution equations with small noise intensities and is adaptable to some special equations, for instance to the 2D stochastic Navier–Stokes equations. Our approach uses a lot of ideas from (and in significant part follows) the program recently developed by Feng and Kurtz [J. Feng, T. Kurtz, Large Deviations for Stochastic Processes, in: Mathematical Surveys and Monographs, vol. 131, American Mathematical Society, Providence, RI, 2006]. Moreover we present easy proofs of exponential moment estimates for solutions of stochastic PDE.  相似文献   

19.
This paper deals with asymptotical stability in probability in the large for stochastic bilinear systems. Some new criteria for asymptotical stability of such systems have been established in the inequality of mathematic expectation. A sufficient condition for bilinear stochastic jump systems to be asymptotically stable in probability in the large in Markovian switching laws is derived in a couple of Riccati-like inequalities by introducing a nonlinear state feedback controller. An illustrative example shows the effectiveness of the method.  相似文献   

20.
In this paper, a general non-autonomous n-species Lotka-Volterra model with delays and stochastic perturbation is investigated. For this model, sufficient conditions for extinction, non-persistence in the mean, weak persistence and stochastic permanence are established. The influences of the stochastic noises to the properties of the stochastic model are discussed. The property permanence for the model is preserved with the sufficiently small noise and sufficiently large noise may cause extinction of the model. The critical value between weak persistence and extinction is obtained. Finally, numerical simulations are given to support the theoretical analysis results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号