首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All electron ab initio Hartree-Fock (HF), configuration interaction (CI) and multiconfiguration self-consistent field (CASSCF) calculations have been applied to investigate the low-lying electronic states of the NiSi molecule. The ground state of the NiSi molecule is predicted to be1Σ+. The chemical bond in the1Σ+ ground state is a double bond composed of one σ and one π bond. The σ bond is due to a delocalized molecular orbital formed by combining the Ni 4s and the Si 3pσ orbitals. The π bond is a partly delocalized valence bond, originating from the coupling of the 3dπ hole on Ni with the 3pπ electron on Si. Withing the energy range 1 eV 18 electronic states have been identified. The lowest lying electronic states have been characterized as having a hole in either the 3dπ or the 3dδ orbital of Ni, and the respective final states are formed when either of these holes are coupled to the 3pπ valence electron of Si.  相似文献   

2.
All-electron ab initio Hartree–Fock (HF ), valence configuration interaction (CI ), and multiconfiguration self-consistent-field (CASSCF ) calculations have been applied to investigate the electronic states of the CrC molecule. The molecule is predicted as having four low-lying electronic states, 3?, 5?, 7?, and 9?, separated by an energy gap of 0.55 eV from the next higher-lying state, 1?, which is followed by the states 5Π and 7Π. The four lowest-lying electronic states are due to the coupling of the angular momenta of the 6Sg Cr+ ion with those of the 4Su C? anion. The chemical bond in the 3? ground state can be viewed as a quadruple bond composed of two σ and two π bonds. One σ bond is due to the formation of a molecular orbital that is doubly occupied. The remaining bonds, i.e., one σ and two π bonds, arise from valence-bond couplings. The π bonds originate from the valence-bond couplings of the electrons in the C 2pπ orbitals with those in the Cr 3dπ orbitals. The σ bond originates from the valence-bond coupling of the C 2pσ electron with an electron in the Cr 4s, 4p hybrid that is polarized away from the C atom.  相似文献   

3.
A series of ab initio calculations are used to determine the C? H???π and π???π‐stacking interactions of aromatic rings coordinated to transition‐metal centres. Two model complexes have been employed, namely, ferrocene and chromium benzene tricarbonyl. Benchmark data obtained from extrapolation of MP2 energies to the basis set limit, coupled with CCSD(T) correction, indicate that coordinated aromatic rings are slightly weaker hydrogen‐bond acceptors but are significantly stronger hydrogen‐bond donors than uncomplexed rings. It is found that π???π stacking to a second benzene is stronger than in the free benzene dimer, especially in the chromium case. This is assigned, by use of energy partitioning in the local correlation method, to dispersion interactions between metal d and benzene π orbitals. The benchmark data is also used to test the performance of more efficient theoretical methods, indicating that spin‐component scaling of MP2 energies performs well in all cases, whereas various density functionals describe some complexes well, but others with errors of more than 1 kcal mol?1.  相似文献   

4.
The nature of the bonding in ferrocene is discussed on the basis of an ab initio LCAO MO SCF calculation, with the emphasis put on a number of controversial points such as: i) the relative ordering of the orbitals e2g(3d) and a1g(3d); ii) the relative ordering of the 31u and e1g ligand π orbitals; and iii) the degree of participation of the metal 4s and 4p orbitals to the bonding.  相似文献   

5.
The electronic structure of 4-H-pyran-4-one and its sulfur analogues were studied using ab initio wave-functions. Bond lengths and overlap populations suggest low aromaticity for this group of compounds. Examination of Jorgensen plots of the lowest π orbitals of I--IV leads to the aromaticity order 4H-thiopyran-4-thione (IV) > 4H-thiopyran-4-one (II) > 4H-pyran-4-thione (III) > 4H-pyran-4-one (I). The effects of including d orbitals were studied using the 3-21G, 3-21G* (6d), and 3-21G* (5d) basis sets. Optimized bond lengths, vibrational frequencies, ionization energies, and dipole moments were also obtained, and results for different basis sets were compared.  相似文献   

6.
The low-lying states of HBBH, HBBNH2 and H2NBBNH2 are investigated by means of ab initio CI calculations using a double-zeta + polarization basis set. Diborene is found to have a 3g ground state. Replacement of hydrogen by amino groups on each side of the BB bond leads to an ethylene-like bond which corresponds to a 1Ag state of D2h symmetry. π back-donation by the amino lone pairs is responsible for the stabilization of this state.  相似文献   

7.
The influence of π conjugation and hyperconjugation in the shortening of the central C-C bond in butadiene with respect to a Csp3-Csp3 bond in alkanes is theoretically investigated by a direct analysis. As expected from simple π models it is demonstrated that the origin of this shortening is mainly due to π conjugation in the planar s-trans conformation while hyperconjugation largely compensates the lack of π conjugation in the perpendicular form and leads to a similar shortening of the central bond, These results contradict one of the conclusions of a recent ab initio study.  相似文献   

8.
9.
The interactions between atoms of noble gases and π systems are generally considered as van der Waals interaction, which have not attracted attention yet. Herein, we present high‐level ab initio calculations to show the unexpected noncovalent interaction between a covalently bonded noble gas atom and a delocalized aromatic π electron using XeO3?benzene as the prototype. The CCSD(T)/CBS reference data show its strength amounting to ?10.2 kcal mol?1, comparable to a typical H‐bond or an anion–π interaction. The energy decomposition analysis reveals that the aerogen–π interaction is favored by the electrostatic interaction (27.7 %), the induction (13.4 %), and the dispersion (21.6 %). This interaction may prompt us to consider the noncovalent chemistry of aerogen derivatives in the near future.  相似文献   

10.
A better understanding of the chemical bond in general is gained from the electronic structure of the molecular complex [{RhBi7}Br8]. The interactions in the central Bi5 ring can be interpreted as an unusual five-center, four-electron bond based on ab initio calculations and group theory. Of the linear combinations of five Bi p orbitals two of the molecular orbitals are binding (depicted in the sketch).  相似文献   

11.
线形碳元素簇合物的成键性质   总被引:2,自引:0,他引:2  
在ab initio 3-21G水平上, 用能量梯度法优化了线性碳元素簇合物C_n~e(n为成簇原子个数, e为电荷)的平衡几何结构. 所得的电离势随成簇原子个数的改变, 呈现出不同程度的奇偶交替变化趋势. 在ab initio计算基础上, 用Boys方法, 对其占据正则分子轨道进行定域化变换, 得到了它们的定域分子轨道. 对定域分子轨道性质的分析表明, 线性碳元素簇合物中, 主要键型有双中心σ和π健, 双中心弯键和三中心香蕉健, 以及多中心σ和π健. 这种键型的多样化可视为小元素簇的成健特征. 此外, 通过对其成键性质的分析, 讨论了线性碳元素簇的稳定性. 对于小碳元素簇, 化学键的共轭性对其稳定性具有十分显著的作用.  相似文献   

12.
The bi(anthracene‐9,10‐dimethylene) photoisomer has remarkably long C–C single bonds. To examine the lengthening of the C–C bond, we propose a novel procedure for quantitatively analyzing orbital interactions in a molecule at the level of the ab initio molecular orbital method. In this procedure, we can cut off the specific through‐space/bond interactions in a molecule by artificially increasing the absolute magnitude of the exponents in a Gaussian function. Then, the spatial orbital interactions were perfectly cut off, and, each term that makes up the total energy, that is, the nuclear–electron attractions, the electron–electron repulsions, and the nuclear–nuclear repulsions cancel each other. Several model molecules of the photoisomer were analyzed by this procedure. It was found that the orbital interaction between the p orbital on the benzene ring and the σ* orbital on the C–C bond in question, σ→σ* electron transfer through π orbital, weakens the C–C bond efficiently when these orbitals were located in the “periplanar” conformation. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

13.
The structures of P2 + P2+ were studied with ab initio calculations at the ROHF and UHF levels with the 6-31G* basis set. The geometries and dissociation energies for the four selected structures–collinear, T-shaped, regular trapezoid, and elongated tetrahedral–were studied in comparison with N2 + N2+. The trade-off of the intramolecular π bond for the intermolecular σ bond for the P4+ system results in its larger dissociation energies and more substantial changes in bond distances than those in the N4+ system. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
In the present work, we present results of all-electron ab initio CASSCF calculations of nine electronic states of the molecule YN. Also reported are the spectroscopic constants derived on the basis of the calculated potential energies. The predicted electronic ground state is 1+, and this state is found to be separated from the excited states 3+, 3Π, and 1Π by 5177, 9290, and 9915 cm?1, respectively. The chemical bond in the YN molecule is polar with charge transfer from Y to N, giving rise to a dipole moment of 8.19 Debye at 3.3 au in the 1+ ground state is basically a double bond composed of two π bonds. The dissociation energy of the YN molecule has been derived as 4.59 eV. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Various electronically excited states of pyrrole have been studied by ab initio SCF and CI calculations including π → π* and π → Rydberg excitations. Optically allowed valence type transitions are found at energies higher than 6.5 eV whereas all the lower singlet states are of Rydberg type. In addition to the experimentally known triplet states at 4.23 and 5.10 eV, several new triplet transitions with energies from 5.71 to 7.10 eV are predicted. In most cases good agreement with experimental data is found.  相似文献   

16.
Testosterone (17β-hydroxy-4-androsten-3-one) was studied by the semiempirical AM1 and PM3 and ab initio STO-3G*, 3–21G*, and 6–31G* methods. The goals were to compare those methods and to know the electronic structure of the hormone. Full geometry optimization was performed, and two crystal conformers (T1 and T2), and experimental dipole moment in solution were used for comparison. One conformer with a dipole moment similar to the solvated conditions was generated. Total energy, entalphies, dipole moments, charges, electrostatic potentials, and highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated. Root-mean-square (RMS) index of the theoretical molecules against T1 and T2 showed best results with the 3–21G* and 6–31G* methods, while AM1 gave better energies than PM3. Dipole moments were directed toward the OH group and the botton face of the A ring. The frontier orbitals were located along the C4–C5 π bond, particularly the LUMO was split between C4 and C5, predicting the action of enzymes at C5 yielding to 5α and 5β-reduced androgens. Electrostatic potentials might be also of biological importance since they are coincidental with the dipole-moment orientation. Finally, it is interesting that the solvatedlike conformer, its properties, and the OH group laid between the same group of T1 and T2 and with a total energy between the crystals and the gas phase or in vacuo conditions. This results might also explain the biology of testosterone and use them to model the hormone-receptor interaction. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
Charge distributions, dipole moments, and molecular electrostatic potentials (MEP) around several molecules consisting of carbon, nitrogen, oxygen, fluorine, sulfur, and chlorine atoms were studied using the PM3 semiempirical method and the results compared with those obtained using ab initio calculations at the RHF/6‐31G** level. Thus it is shown that relative MEP values near different atoms can be obtained using hybridization displacement charges (HDC) obtained by employing PM3 density matrices that usually agree quite satisfactorily with the ab initio ones. Further, positions of ab initio MEP minima are correctly located and the corresponding relative MEP values usually correctly predicted using the PM3(HDC) charges distributed continuously in three dimensions according to the forms of squares of valence s atomic orbitals. The necessary parameters for HDC calculations using the PM3 method were optimized. It is shown how within the frameworks of both PM3 and AM1 methods the π electrons or lone pairs associated with amino group nitrogen atoms and ring atoms can be satisfactorily treated in different situations. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 299–312, 2001  相似文献   

18.
Localized orbitals have recently been employed in large ab initio calculations, but their use has generally been restricted to ground‐state problems. In this work, we analyze the molecular orbitals of the excited states, optimized with a recently proposed local procedure. This method produces local orbitals of the CAS–SCF type, which permits its application to the study of excited states. In particular, we focus on the π→π* triplet excited state in polyenes, calculated using a 2/2 CAS space which includes two electrons in one π and one π* orbitals. In small polyenes, these two singly occupied active orbitals are delocalized all along the molecule. The extent of the delocalization is analyzed by studying polyenes of increasing size. Different polyenes have been studied, going from C14H16 to the C70H72 polyene. The relation of the π→π* excitation with the cation and anion systems is also discussed. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
Ultrafast UV-pump/soft-X-ray-probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1Π1 excited state, with emphasis on the transient response in the soft-X-ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K-edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I−CN bond cleavage process. The simulated UV-pump/soft-X-ray-probe spectra exhibit detailed dynamical information, including a time-domain signature for coherent vibration associated with the photogenerated CN fragment.  相似文献   

20.
The localized molecular orbitals of some saturated hydrocarbons and their derivatives have been formed using ab initio method and M. P. [1–2] localization procedure. Two models, SLMO and ELMO , a set of parameters of LMO Fock matrix elements, and a technique called “Group Effect” are proposed. Based on these, we developed a procedure to simulate the ab initio calculations on large molecules. Some test calculations have been done. The results are compared with those of the ab initio method. In general, absolute errors of orbital energies are about 10?3 a.u., and the relative errors of total energies are about 10?4. For the original applications, we applied this procedure to some large systems of alkane and their derivatives as well as three Crown-ether compounds. Satisfactory results are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号