首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research is to investigate the effects of material inhomogeneity on the decay of Saint-Venant end effects in linear isotropic elasticity. This question is addressed within the context of anti-plane shear deformations of an inhomogeneous isotropic elastic solid. The mathematical issues involve the effects of spatial inhomogeneity on the decay rates of solutions to Dirichlet or Neumann boundary-value problems for a second-order linear elliptic partial differential equation with variable coefficients on a semi-infinite strip. The elastic coefficients are assumed to be smooth functions of the transverse coordinate. The estimated rate of exponential decay with distance from the loaded end (a lower bound for the exact rate of decay) is characterized in terms of the smallest positive eigenvalue of a Sturm–Liouville problem with variable coefficients. Analytic lower bounds for this eigenvalue are used to obtain the desired estimated decay rates. Numerical techniques are also employed to assess the accuracy of the analytic results. A related eigenvalue optimization question is discussed and its implications for the issue of material tailoring is addressed. The results of this paper are applicable to continuously inhomogeneous materials and, in particular, to functionally graded materials. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
This paper treats the asymptotic behavior of solutions of a linear secondorder elliptic partial differential equation defined on a two-dimensional semiinfinite strip. The equation has divergence form and variable coefficients. Such equations arise in the theory of steady-state heat conduction for inhomogeneous anisotropic materials, as well as in the theory of anti-plane shear deformations for a linearized inhomogeneous anisotropic elastic solid. Solutions of such equations that vanish on the long sides of the strip are shown to satisfy a theorem of Phragmén-Lindelöf type, providing estimates for the rate of growth or decay which are optimal for the case of constant coefficients. The results are illustrated by several examples. The estimates obtained in this paper can be used to assess the influence of inhomogeneity and anisotropy on the decay of end effects arising in connection with Saint-Venant's principle.  相似文献   

3.
The purpose of this research is to investigate the influence of material inhomogeneity on the decay of Saint-Venant end effects in anti-plane shear deformations of linear isotropic mixtures of elastic solids. The work is motivated by the recent research activity on functionally graded materials (FGMs), i.e. materials with spatially varying properties tailored to satisfy particular engineering applications. The spatial decay of solutions of a boundary value problem with variable coefficients on a semi-infinite strip is investigated. The results may be interpreted in terms of a Saint-Venant principle for anti-plane shear deformations of linear isotropic mixtures of elastic solids.  相似文献   

4.
The purpose of this research is to further investigate the effects of material inhomogeneity and the combined effects of material inhomogeneity and anisotropy on the decay of Saint-Venant end effects. Saint-Venant decay rates for self-equilibrated edge loads in symmetric sandwich structures are examined in the context of anti-plane shear for linear anisotropic elasticity. The problem is governed by a second-order, linear, elliptic, partial differential equation with discontinuous coefficients. The most general anisotropy consistent with a state of anti-plane shear is considered, as well as a variety of boundary conditions. Anti-plane or longitudinal shear deformations are one of the simplest classes of deformations in solid mechanics. The resulting deformations are completely characterized by a single out-of-plane displacement which depends only on the in-plane coordinates. They can be thought of as complementary deformations to those of plane elasticity. While these deformations have received little attention compared with the plane problems of linear elasticity, they have recently been investigated for anisotropic and inhomogeneous linear elasticity. In the context of linear elasticity, Saint-Venant's principle is used to show that self-equilibrated loads generate local stress effects that quickly decay away from the loaded end of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self-equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have zero resultant force and moment. When Saint-Venant's principle is valid, pointwise boundary conditions can be replaced by more tractable resultant conditions. It is shown in the present study that material inhomogeneity significantly affects the practical application of Saint-Venant's principle to sandwich structures.  相似文献   

5.
The purpose of this research is to investigate the influence of material inhomogeneity and anisotropy on the decay of Saint-Venant end effects in anti-plane shear deformations of linear mixtures of elastic solids. The spatial decay of solutions of a boundary value problem with variable coefficients on a semi-infinite strip is investigated. The results may be interpreted in terms of a Saint-Venant principle for anti-plane shear deformations of linear anisotropic mixtures of elastic solids. As our first results have a very general point of view, we study some examples in detail.  相似文献   

6.
In the linear theory of elasticity, Saint-Venant's principle is used to justify the neglect of edge effects when determining stresses in a body. For isotropic materials, the validity of this is well established. However for anisotropic and composite materials, experimental results have shown that edge effects may persist much farther into the material than for isotropic materials and as a result cannot be neglected. This paper further examines the effects of material anisotropy on the exponential decay rate for stresses in a semi-infinite elastic strip. A linearly elastic semi-infinite strip in a state of plane stress/strain subject to a self-equilibrated end load is considered first for a specially orthotropic material and then for the general anisotropic material. The problem is governed by a fourth-order elliptic partial differential equation with constant coefficients. In the former case, just a single dimensionless material parameter appears, while in the latter, only three dimensionless parameters are required. Energy methods are used to establish lower bounds on the actual stress decay rate. Both analytic and numerical estimates are obtained in terms of the elastic constants of the material and results are shown for several contemporary engineering materials. When compared with the exact stress decay rate computed numerically from the eigenvalues of a fourth-order ordinary differential equation, the results in some cases show a high degree of accuracy. In particular, for strongly orthotropic materials, an asymptotic estimate provides extremely accurate estimates for the decay rate. Results of the type obtained here have several important practical applications. For example, they provide physical insight into the mechanical testing of anisotropic and laminated composite structures (including the off-axis tension test), are useful in assessing the influence of fasteners, joints, etc. on the behavior of composite structures and allow for tailoring a material with specific properties to ensure that local stresses attenuate at a desired rate.  相似文献   

7.
The recent developments in smart structures technology have stimulated renewed interest in the fundamental theory and applications of linear piezoelectricity. In this paper, we investigate the decay of Saint-Venant end effects for plane deformations of a piezoelectric semi-infinite strip. First of all, we develop the theory of plane deformations for a general anisotropic linear piezoelectric solid. Just as in the mechanical case, not all linear homogeneous anisotropic piezoelectric cylindrical solids will sustain a non-trivial state of plane deformation. The governing system of four second-order partial differential equations for the two in-plane displacements and electric potential are overdetermined in general. Sufficient conditions on the elastic and piezoelectric constants are established that do allow for a state of plane deformation. The resulting traction boundary-value problem with prescribed surface charge is an oblique derivative boundary-value problem for a coupled elliptic system of three second-order partial differential equations. The special case of a piezoelectric material transversely isotropic about the poling axis is then considered. Thus the results are valid for the hexagonal crystal class 6mm. The geometry is then specialized to be a two-dimensional semi-infinite strip and the poling axis is the axis transverse to the longitudinal direction. We consider such a strip with sides traction-free, subject to zero surface charge and self-equilibrated conditions at the end and with tractions and surface charge assumed to decay to zero as the axial variable tends to infinity. A formulation of the problem in terms of an Airy-type stress function and an induction function is adopted. The governing partial differential equations are a coupled system of a fourth and third-order equation for these two functions. On seeking solutions that exponentially decay in the axial direction one obtains an eigenvalue problem for a coupled system of fourth and second-order ordinary differential equations. This problem is the piezoelectric analog of the well-known eigenvalue problem arising in the case of an anisotropic elastic strip. It is shown that the problem can be uncoupled to an eigenvalue problem for a single sixth-order ordinary differential equation with complex eigenvalues characterized as roots of transcendental equations governing symmetric and anti-symmetric deformations and electric fields. Assuming completeness of the eigenfunctions, the rate of decay of end effects is then given by the real part of the eigenvalue with smallest positive real part. Numerical results are given for PZT-5H, PZT-5, PZT-4 and Ceramic-B. It is shown that end effects for plane deformations of these piezoceramics penetrate further into the strip than their counterparts for purely elastic isotropic materials.  相似文献   

8.
This paper is concerned with the linear theory of inhomogeneous and orthotropic elastic materials with voids. We study the problem of extension and bending of right cylinders when the constitutive coefficients are independent of the axial coordinate. First, the plane strain problem for inhomogeneous and orthotropic elastic materials with voids is investigated. Then, the solution of the problem of extension and bending is expressed in terms of solutions of three plane strain problems. The results are used to study the extension of a circular cylinder with a special kind of inhomogeneity. The influence of the material inhomogeneity on the axial strain is established.   相似文献   

9.
The integral equation method is presented for elastodynamic problems of inhomogeneous anisotropic bodies. Since fundamental solutions are not available for general inhomogeneous anisotropic media, we employ the fundamental solution for homogeneous elastostatics. The terms induced by material inhomogeneity and inertia force are regarded as body forces in elastostatics, and evaluated in the form of volume integrals. The scattering problems of elastic waves by inhomogeneous anisotropic inclusions are investigated for some test cases. Numerical results show the significant effects of inhomogeneity and anisotropy of materials on wave propagations.  相似文献   

10.
The existence of frequency-dependent fundamental solutions for anisotropic, inhomogeneous continua under plane strain conditions is a necessary pre-requisite for studying wave motion, either in geological media or in composites with both depth and direction-dependent material parameters. The path followed herein for recovering such types of solutions is (a) to use a simple algebraic transformation for the displacement vector so as to bring about a governing partial differential equation of motion with constant coefficients, albeit at the cost of introducing a series of constraints on the types of material profiles; (b) to carefully examine these constraints, which reveal a rather rich range of possible variations of the elastic moduli in both vertical and lateral directions; and (c) to use the Radon transformation for handling material anisotropy. Depending on the type of constraints that have been introduced, two basic classes of materials are identified, namely ‘Case A’ where further restrictions are placed on the elasticity tensor and ‘Case B’ where further restrictions are placed on the material profile. We note at this point that for isotropic materials, the elasticity tensor constraints correspond to equal Lamé constants or, alternatively, to a fixed Poisson's ratio. The present methodology is quite general and the homogeneous anisotropic medium, as well as the inhomogeneous isotropic one, can both be recovered as special cases from the results given herein.  相似文献   

11.
The paper presents a three-dimensional solution to the equilibrium equations for linear elastic transversely isotropic inhomogeneous media. We assume that the material has constant Poisson’s ratios, and its Young’s and shear moduli have the same functional form of dependence on the co-ordinate normal to the plane of isotropy. We show, apparently for the first time, that stresses and displacements in such an inhomogeneous transversely isotropic elastic solid can be represented in terms of two displacement functions which satisfy the second- and fourth-order partial differential equations. We examine and discuss key aspects of the new representation; they include the relationship between the new displacement functions and Plevako’s solution for isotropic inhomogeneous material with constant Poisson’s ratio as well as the application of the new representation to some important classes of three-dimensional elasticity problems. As an example, the displacement function is derived that can be used to determine stresses and displacements in an inhomogeneous transversely isotropic half-space which is subjected to a concentrated force normal to a free surface and applied at the origin (Boussinesq’s problem).  相似文献   

12.
A general Love solution for the inhomogeneous transversely isotropic theory of elasticity with the elastic constants dependent on the coordinate z is proposed. This result may be considered as a generalization of the Love solutions we recently derived for the inhomogeneous isotropic theory of elasticity. The key steps of deriving the Love solution for the classical linear homogeneous transversely isotropic theory of elasticity are described for further use of the derivation procedure, which is then generalized to the inhomogeneous transversely isotropic case. Some particular cases of inhomogeneity traditionally used in the theory of elasticity are also examined. The significance of the derived solutions and their importance for the modeling of functionally graded materials are briefly discussed  相似文献   

13.
The present paper is concerned with the study of propagation of torsional waves in an inhomogeneous isotropic layer whose material properties vary harmonically with a space variable, lying over a semi-infinite inhomogeneous isotropic half-space. The closed form solutions for the displacement in the layer and half-space are obtained separately. The dimensionless phase velocity has been plotted against dimensionless wave number and scaled wave number for different values of inhomogeneity parameters. The effects of inhomogeneity have been shown in the dispersion curves using 2D and 3D plot.  相似文献   

14.
The elastoplastic pure bending problem of a curved beam with material inhomo- geneity is investigated based on Tresca's yield criterion and its associated flow rule. Suppose that the material is elastically isotropic, ideally elastic-plastic and its elastic modulus and yield limit vary radially according to exponential functions. Closed-form solutions to the stresses and radial displacement in both purely elastic stress state and partially plastic stress state are presented. Numerical examples reveal the distinct characteristics of elastoplastic bending of a curved beam composed of inhomogeneous materials. Due to the inhomogeneity of materials, the bearing capac- ity of the curved beam can be improved greatly and the initial yield mode can also be dominated. Closed-form solutions presented here can serve as benchmark results for evaluating numerical solutions.  相似文献   

15.
In this study the generally anisotropic and angularly inhomogeneous wedge, under power law tractions of order n of the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain–stress relations and the strain compatibility equation, a differential system of equations is constructed and investigated. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. In the sequel William's asymptotic analysis in the case of angular inhomogeneity is examined. Finally, applications for the case of an angularly inhomogeneous wedge-shape dam and for the asymptotic procedure in an isotropic wedge with angularly varying shear modulus, are made.  相似文献   

16.
An exact study based on the linear theory of elasticity is presented for the steady-state sound radiation characteristics of an arbitrarily thick radially inhomogeneous elastic isotropic hollow sphere, immersed in and filled with ideal compressible fluids, and subjected to an arbitrary axisymmetric time-harmonic driving force at its internal surface. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics by means of the laminated approximation approach. Taylor’s expansion theorem is subsequently employed to solve the modal state equation, ultimately calculating a global transfer matrix. Numerical results are presented for a water-submerged/air-filled steel/zirconia FGM hollow sphere under an axisymmetric distributed internal pressure force. The effects of shell wall thickness, the material compositional gradient, frequency, and subtended polar angle of the internal pressure force on the far-field radiated pressure directivity patterns as well as the total radiated power are examined. It is demonstrated that the material gradient can significantly change the acoustical characteristics of hollow inhomogeneous sphere, especially for thick shells at high excitation frequencies. Limiting cases are considered and good agreements with available results as well as with the computations made by using a finite element package are obtained.  相似文献   

17.
Confined compression is a common experimental technique aimed at gaining information on the properties of biphasic mixtures comprised of a solid saturated by a fluid, a typical example of which are soft hydrated biological tissues. When the material properties (elastic modulus, permeability) are assumed to be homogeneous, the governing equation in the axial displacement reduces to a Fourier equation which can be solved analytically. For the more realistic case of inhomogeneous material properties, the governing equation does not admit, in general, a solution in closed form. In this work, we propose a semi-analytical alternative to Finite Element analysis for the study of the confined compression of linearly elastic biphasic mixtures. The partial differential equation is discretised in the space variable and kept continuous in the time variable, by use of the Finite Difference Method, and the resulting system of ordinary differential equations is solved by means of the Laplace Transform method.  相似文献   

18.
An exact analysis is carried out to study interaction of a time-harmonic plane-progressive sound field with a multi-layered elastic hollow sphere made of spherically isotropic materials with interlaminar bonding imperfections. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics, ultimately leading to calculation of a global transfer matrix. A linear spring model is adopted to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. The solution is first used to correlate the perturbation in the material elastic constants of an evacuated and water submerged steel (isotropic) spherical shell to the sensitivity of resonances appearing in the backscattered amplitude spectrum. The backscattering form function, in addition to the acoustic radiation force acting on selected transversely isotropic spherical shells with distinct degrees of material anisotropy, is subsequently calculated and discussed. An illustrative numerical example is given for a multi-layered hollow sphere with two distinct interlaminar interface conditions (i.e., perfectly and imperfectly bonded layers). Limiting cases are considered and fair agreements with solutions available in the literature are established.  相似文献   

19.
The purpose of this research is to investigate the effects of material inhomogeneity on the response of linearly elastic isotropic hollow circular cylinders or disks under uniform internal or external pressure. The work is motivated by the recent research activity on functionally graded materials (FGMs), i.e., materials with spatially varying properties tailored to satisfy particular engineering applications. The analog of the classic Lamé problem for a pressurized homogeneous isotropic hollow circular cylinder or disk is considered. The special case of a body with Young"s modulus depending on the radial coordinate only, and with constant Poisson"s ratio, is examined. It is shown that the stress response of the inhomogeneous cylinder (or disk) is significantly different from that of the homogeneous body. For example, the maximum hoop stress does not, in general, occur on the inner surface in contrast with the situation for the homogeneous material. The results are illustrated using a specific radially inhomogeneous material model for which explicit exact solutions are obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The effect of a thin isotropic coating on the edge effect zone in a representative element of a coated material is examined. Isotropic and transversely isotropic materials are considered. The transversely isotropic material has the elastic properties of unidirectional glass-fiber-reinforced plastic. The decay of the edge effect in the directions perpendicular to the coating plane and to the plane of isotropy is studied. A boundary-value problem of elasticity for piecewise-homogeneouse orthotropic bodies and a quantitative edge effect decay criterion for normal stresses are used as a design model. The problem is solved using the finite-difference method and base schemes. The results of evaluation of the edge effect zone in homogeneous and inhomogeneous materials are presented. It is shown that the presence of a thin isotropic coating blocks the edge effect, that is, decreases the edge effect zone in both isotropic and transversely isotropic materials __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 61–67, December 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号