首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The homolytic cleavage of the organometallic Co-C bond in vitamin B12-dependent enzymes is accelerated by a factor of approximately 10(12) in the protein compared to that of the isolated cofactor in aqueous solution. To understand this much debated effect, we have studied the Co-C bond cleavage in the enzyme glutamate mutase with combined quantum and molecular mechanics methods. We show that the calculated bond dissociation energy (BDE) of the Co-C bond in adenosyl cobalamin is reduced by 135 kJ/mol in the enzyme. This catalytic effect can be divided into four terms. First, the adenosine radical is kept within 4.2 angstroms of the Co ion in the enzyme, which decreases the BDE by 20 kJ/mol. Second, the surrounding enzyme stabilizes the dissociated state by 42 kJ/mol using electrostatic and van der Waals interactions. Third, the protein itself is stabilized by 11 kJ/mol in the dissociated state. Finally, the coenzyme is geometrically distorted by the protein, and this distortion is 61 kJ/mol larger in the Co(III) state. This deformation of the coenzyme is caused mainly by steric interactions, and it is especially the ribose moiety and the Co-C5'-C4' angle that are distorted. Without the polar ribose group, the catalytic effect is much smaller, e.g. only 42 kJ/mol for methyl cobalamin. The deformation of the coenzyme is caused mainly by the substrate, a side chain of the coenzyme itself, and a few residues around the adenosine part of the coenzyme.  相似文献   

2.
Protein contributions to the substrate-triggered cleavage of the cobalt-carbon (Co-C) bond and formation of the cob(II)alamin-5'-deoxyadenosyl radical pair in the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium have been studied by using pulsed-laser photolysis of AdoCbl in the EAL-AdoCbl-substrate ternary complex, and time-resolved probing of the photoproduct dynamics by using ultraviolet-visible absorption spectroscopy on the 10(-7)-10(-1) s time scale. Experiments were performed in a fluid dimethylsulfoxide/water cryosolvent system at 240 K, under conditions of kinetic competence for thermal cleavage of the Co-C bond in the ternary complex. The static ultraviolet-visible absorption spectra of holo-EAL and ternary complex are comparable, indicating that the binding of substrate does not labilize the cofactor cobalt-carbon (Co-C) bond by significantly distorting the equilibrium AdoCbl structure. Photolysis of AdoCbl in EAL at 240 K leads to cob(II)alamin-5'-deoxyadenosyl radical pair quantum yields of <0.01 at 10(-6) s in both holo-EAL and ternary complex. Three photoproduct states are populated following a saturating laser pulse, and labeled, P(f), P(s), and P(c). The relative amplitudes and first-order recombination rate constants of P(f) (0.4-0.6; 40-50 s(-1)), P(s) (0.3-0.4; 4 s(-1)), and P(c) (0.1-0.2; 0) are comparable in holo-EAL and in the ternary complex. Time-resolved, full-spectrum electron paramagnetic resonance (EPR) spectroscopy shows that visible irradiation alters neither the kinetics of thermal cob(II)alamin-substrate radical pair formation, nor the equilibrium between ternary complex and cob(II)alamin-substrate radical pair, at 246 K. The results indicate that substrate binding to holo-EAL does not "switch" the protein to a new structural state, which promptly stabilizes the cob(II)alamin-5'-deoxyadenosyl radical pair photoproduct, either through an increased barrier to recombination, a decreased barrier to further radical pair separation, or lowering of the radical pair state free energy, or a combination of these effects. Therefore, we conclude that such a change in protein structure, which is independent of changes in the AdoCbl structure, and specifically the Co-C bond length, is not a basis of Co-C bond cleavage catalysis. The results suggest that, following the substrate trigger, the protein interacts with the cofactor to contiguously guide the cleavage of the Co-C bond, at every step along the cleavage coordinate, starting from the equilibrium configuration of the ternary complex. The cleavage is thus represented by a diagonal trajectory across a free energy surface, that is defined by chemical (Co-C separation) and protein configuration coordinates.  相似文献   

3.
The potential energy surface of the free 5'-deoxyadenosyl radical in the gas phase is explored using density functional and second-order M?ller-Plesset perturbation theories with 6-31G(d) and 6-31++G(d,p) basis sets and interpreted in terms of attractive and repulsive interactions. The 5',8-cyclization is found to be exothermic by approximately 20 kcal/mol but kinetically unfavorable; the lowest cyclization transition state (TS) lies about 7 kcal/mol higher than the highest TS for conversion between most of the open isomers. In open isomers, the two energetically most important attractive interactions are the hydrogen bonds (a) between the 2'-OH group and the N3 adenine center and (b) between the 2'-OH and 3'-OH groups. The relative ribose-adenine rotation about the C1'-N9 glycosyl bond in a certain range changes the energy by as much as 10-15 kcal/mol, the origin being (i) the repulsive 2'-H.H-C8 and O1'.N3 and (ii) the attractive 2'-OH.N3 ribose-adenine interactions. The hypothetical synergy between the glycosyl rotation and the Co-C bond scission may contribute to the experimentally established labilization of the Co-C bond in enzyme-bound adenosylcobalamin. The computational results are not inconsistent with the rotation about the C1'-N9 glycosyl bond being the principal coordinate for long-range radical migration in coenzyme B(12)-dependent enzymes. The effect of the protein environment on the model system results reported here remains an open question.  相似文献   

4.
Density functional theory (DFT) has been applied to the analysis of the structural and electronic properties of the alkyl-cobalt(III) phthalocyanine complexes, [CoIIIPc]-R (Pc = phthalocyanine, R = Me or Et), and their pyridine adducts. The BP86/6-31G(d) level of theory shows good reliability for the optimized axial bond lengths and bond dissociation energies (BDEs). The mechanism of the reductive cleavage was probed for the [CoIIIPc]-Me complex which is known as a highly effective methyl group donor. In the present analysis, which follows a recent study on the reductive Co-C bond cleavage in methylcobalamin (J. Phys. Chem. B 2007, 111, 7638-7645), it is demonstrated that addition of an electron and formation of the pi-anion radical [CoIII(Pc*)]-Me- significantly lowers the energetic barrier required for homolytic Co-C bond dissociation. Such BDE lowering in [CoIII(Pc*)]-Me- arises from the involvement of two electronic states: upon electron addition, a quasi-degenerate pi*Pc state is initially formed, but when the cobalt-carbon bond is stretched, the unpaired electron moves to a sigma*Co-C state and the final cleavage involves the three-electron (sigma)2(sigma*)1 bond. As in corrin complexes, the pi*Pc-sigma*Co-C states crossing does not take place at the equilibrium geometry of [CoIII(Pc*)]-Me- but only when the Co-C bond is stretched to approximately 2.3 A. The DFT computed Co-C BDE of 23.3 kcal/mol in the one-electron-reduced phthalocyanine species, [CoIII(Pc*)]-Me-, is lowered by approximately 37% compared to the neutral Py-[CoIIIPc]-Me complex where BDE = 36.8 kcal/mol. A similar comparison for the corrin-containing complexes shows that a DFT computed BDE of 20.4 kcal/mol for [CoIII(corrin*)]-Me leads to approximately 45% bond strength reduction, in comparison to 37.0 kcal/mol for Im-[CoIII(corrin)]-Me+. These results suggest some preference by the alkylcorrinoids for the reductive cleavage mechanism.  相似文献   

5.
The formation of the Co(II)-substrate radical pair catalytic intermediate in coenzyme B12 (adenosylcobalamin)-dependent ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium has been studied by using time-resolved continuous-wave electron paramagnetic resonance (EPR) spectroscopy in a cryosolvent system. The 41% v/v DMSO/water cryosolvent allows mixing of holoenzyme and substrate, (S)-2-aminopropanol, at 230 K under conditions of kinetic arrest. Temperature step from 230 to 234-248 K initiates the cleavage of the cobalt-carbon bond and the monoexponential rise (rate constant, k(obs) = tau(obs)(-1)) of the EPR-detected Co(II)-substrate radical pair state. The detection deadtime: tau(obs) ratio is reduced by >10(2), relative to millisecond rapid mixing experiments at ambient temperatures. The EPR spectrum acquisition time is 5tau(obs), the approximately 10(2)-fold slower rate of the substrate radical rearrangement reaction relative to k(obs), and the reversible temperature dependence of the amplitude indicate that the Co(II)-substrate radical pair and ternary complex are essentially at equilibrium. The reaction is thus treated as a relaxation to equilibrium by using a linear two-step, three-state mechanism. The intermediate state in this mechanism, the Co(II)-5'-deoxyadenosyl radical pair, is not detected by EPR at signal-to-noise ratios of 10(3), which indicates that the free energy of the Co(II)-5'-deoxyadenosyl radical pair state is >3.3 kcal/mol, relative to the Co(II)-substrate radical pair. Van't Hoff analysis yields DeltaH13 = 10.8 +/- 0.8 kcal/mol and DeltaS13 = 45 +/- 3 cal/mol/K for the transition from the ternary complex to the Co(II)-substrate radical pair state. The free energy difference, DeltaG13, is zero to within one standard deviation over the temperature range 234-248 K. The extrapolated value of DeltaG13 at 298 K is -2.6 +/- 1.2 kcal/mol. The estimated EAL protein-associated contribution to the free energy difference is DeltaG(EAL) = -24 kcal/mol at 240 K, and DeltaH(EAL) = -13 kcal/mol and DeltaS(EAL) = 38 cal/mol/K. The results show that the EAL protein makes both strong enthalpic and entropic contributions to overcome the large, unfavorable cobalt-carbon bond dissociation energy, which biases the reaction in the forward direction of Co-C bond cleavage and Co(II)-substrate radical pair formation.  相似文献   

6.
Hydrogen abstraction from 2-aminoethanol by the 5'-deoxyadenosyl radical, which is formed upon Co--C bond homolysis in coenzyme B(12), was investigated by theoretical means with employment of the DFT (B3LYP) and ab initio (MP2) approaches. As a model system for the 5'-deoxyadenosyl moiety the computationally less demanding 1,5-dideoxyribose was employed; two conformers, which differ in ring conformation (C2- and C3-endo), were considered. If hydrogen is abstracted from "free" substrate by the C2-endo conformer of the 1,5-dideoxyribose-5-yl radical, the activation enthalpy is 16.7 kcal mol(-1); with the C3-endo counterpart, the value is 17.3 kcal mol(-1). These energetic requirements are slightly above the activation enthalpy limit (15 kcal mol(-1)) determined experimentally for the rate-determining step of the sequence, that is, hydrogen delivery from 5'-deoxyadenosine to the product radical. The activation enthalpy is lower when the substrate interacts with at least one amino acid from the active site. According to the computations, when a His model system partially protonates the substrate the activation enthalpy is 4.5 kcal mol(-1) for the C3-endo conformer and 5.8 kcal mol(-1) for the C2-endo counterpart. As hydrogen abstraction from the fully as well as the partially protonated substrate is preceded by the formation of quite stable encounter complexes, the actual activation barriers are around 13-15 kcal mol(-1). A synergistic interaction of 2-aminoethanol with two amino acids where His partially protonates the NH(2) group and Asp partially deprotonates the OH group of the substrate results in an activation enthalpy of 12.4 kcal mol(-1) for the C3-endo conformer and 13.2 kcal mol(-1) for the C2-endo counterpart. However, if encounter complexes exist in the active site, the actual activation barriers are much higher (>25 kcal mol(-1)) than that reported for the rate-determining step. These findings together with previous computations suggest that the energetics of the initial hydrogen abstraction decrease with an interaction of the substrate with only a protonating auxiliary, but for the rearrangement of the radical the synergistic effects of two auxiliaries are essential to pull the barrier below the limit of 15 kcal mol(-1).  相似文献   

7.
Methylmalonyl-CoA mutase (MMCM) is an enzyme that utilizes the adenosylcobalamin (AdoCbl) cofactor to catalyze the rearrangement of methylmalonyl-CoA to succinyl-CoA. Despite many years of dedicated research, the mechanism by which MMCM and related AdoCbl-dependent enzymes accelerate the rate for homolytic cleavage of the cofactor's Co-C bond by approximately 12 orders of magnitude while avoiding potentially harmful side reactions remains one of the greatest subjects of debate among B(12) researchers. In this study, we have employed electronic absorption (Abs) and magnetic circular dichroism (MCD) spectroscopic techniques to probe cofactor/enzyme active site interactions in the Co(3+)Cbl "ground" state for MMCM reconstituted with both the native cofactor AdoCbl and its derivative methylcobalamin (MeCbl). In both cases, Abs and MCD spectra of the free and enzyme-bound cofactor are very similar, indicating that replacement of the intramolecular base 5,6-dimethylbenzimidazole (DMB) by a histidine residue from the enzyme active site has insignificant effects on the cofactor's electronic properties. Likewise, spectral perturbations associated with substrate (analogue) binding to holo-MMCM are minor, arguing against substrate-induced enzymatic Co-C bond activation. As compared to the AdoCbl data, however, Abs and MCD spectral changes for the sterically less constrained MeCbl cofactor upon binding to MMCM and treatment of holoenzyme with substrate (analogues) are much more substantial. Analysis of these changes within the framework of time-dependent density functional theory calculations provides uniquely detailed insight into the structural distortions imposed on the cofactor as the enzyme progresses through the reaction cycle. Together, our results indicate that, although the enzyme may serve to activate the cofactor in its Co(3+)Cbl ground state to a small degree, the dominant contribution to the enzymatic Co-C bond activation presumably comes through stabilization of the Co(2+)Cbl/Ado. post-homolysis products.  相似文献   

8.
Time resolved photoacoustic calorimetry (PAC) was applied to a study of the photolysis of a coenzyme B(12) analog 2',5'-dideoxyadenosylcobalamin, which lacks an -OH group at the 2' position of ribofuranose ring. In aqueous solution, we report for the first time the quantum yield Phi(d) (0.25+/-0.02), Co-C bond dissociation energy (BDE; 31.8+/-2.5 kcal mol(-1)) and reaction volume change deltaV(R) (6.5+/-0.5 ml mol(-1)) due to conformation changes of the corrin ring and its side chains accompanying the cleavage of the Co-C bond. These values for the analog are very similar to those for the natural cofactor. Based our results and previous studies, a possible explanation for the similarity in their structure and properties versus the large difference in their enzymatic activity is discussed.  相似文献   

9.
The enzymatic "activation" of coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl), in which homolysis of the carbon-cobalt bond of the coenzyme is catalyzed by some 10(9)- to 10(14)-fold, remains one of the outstanding problems in bioinorganic chemistry. Mechanisms which feature the enzymatic manipulation of the axial Co-N bond length have been investigated by theoretical and experimental methods. Classical mechanochemical triggering, in which steric compression of the long axial Co-N bond leads to increased upward folding of the corrin ring and stretching of the Co-C bond is found to be feasible by molecular modeling, but the strain induced in the Co-C bond seems to be too small to account for the observed catalytic power. The modeling study shows that the effect is a steric one which depends on the size of the axial nucleotide base, as substitution of imidazole (Im) for the normal 5,6-dimethylbenzimidazole (Bzm) axial base decreases the Co-C bond labilization considerably. An experimental test was thus devised using the coenzyme analog with Im in place of Bzm (Ado(Im)Cbl). Studies of the enzymatic activation of this analog by the B12-dependent ribonucleoside triphosphate reductase from Lactobacillus leichmannii coupled with studies of the non-enzymatic homolytic lability of the Co-C bond of Ado(Im)Cbl show that the enzyme is only slightly less efficient (3.8-fold, 0.8 kcal mol(-1)) at activating Ado(Im)Cbl than at activating AdoCbl itself. This suggests, in agreement with the modeling study, that mechanochemical triggering can make only a small contribution to the enzymatic activation of AdoCbl. Another possibility, electronic stabilization of the Co(II) homolysis product by compression of the axial Co-N bond, requires that enzymatic activation be sensitive to the basicity of the axial nucleotide. Preliminary studies of the enzymatic activation of a coenzyme analog with a 5-fluoroimidazole axial nucleotide suggest that the catalysis of Co-C bond homolysis may indeed be significantly slowed by the decrease in basicity.  相似文献   

10.
Coenzyme B12 initiates radical chemistry in two types of enzymatic reactions, the irreversible eliminases (e.g., diol dehydratases) and the reversible mutases (e.g., methylmalonyl-CoA mutase). Whereas eliminases that use radical generators other than coenzyme B12 are known, no alternative coenzyme B12 independent mutases have been detected for substrates in which a methyl group is reversibly converted to a methylene radical. We predict that such mutases do not exist. However, coenzyme B12 independent pathways have been detected that circumvent the need for glutamate, beta-lysine or methylmalonyl-CoA mutases by proceeding via different intermediates. In humans the methylcitrate cycle, which is ostensibly an alternative to the coenzyme B12 dependent methylmalonyl-CoA pathway for propionate oxidation, is not used because it would interfere with the Krebs cycle and thereby compromise the high-energy requirement of the nervous system. In the diol dehydratases the 5'-deoxyadenosyl radical generated by homolysis of the carbon-cobalt bond of coenzyme B12 moves about 10 A away from the cobalt atom in cob(II)alamin. The substrate and product radicals are generated at a similar distance from cob(II)alamin, which acts solely as spectator of the catalysis. In glutamate and methylmalonyl-CoA mutases the 5'-deoxyadenosyl radical remains within 3-4 A of the cobalt atom, with the substrate and product radicals approximately 3 A further away. It is suggested that cob(II)alamin acts as a conductor by stabilising both the 5'-deoxyadenosyl radical and the product-related methylene radicals.  相似文献   

11.
A combined density functional theory (DFT) and molecular mechanics (MM) approach was applied to investigate the relationship between the structure of a free coenzyme B12, and bound to methylmalonyl-CoA mutase. It was found that, upon coenzyme binding to apoenzyme, the Co-C bond remains intact, while the C-Naxial bond becomes slightly elongated and labilized. The labilization of the Co-Naxial bond that takes place in coenzyme B12-dependent enzymes is most likely necessary for fine-tuning of the cobalt-nitrogen (axial base) distance. The controlling of this distance is important to inhibit abiological site reaction involving heterolysis of the Co-C bond but is not important for biologically relevant Co-C bond homolysis.  相似文献   

12.
Two different chemical methods have been used to form glutathione radical cations: (1) collision-induced dissociations (CIDs) of the ternary complex [Cu(II)(tpy)(M)]˙(2+) (M = GSH, tpy = 2,2':6',2'-terpyridine) and (2) homolysis of the S-NO bond in protonated S-nitrosoglutathione. The radical cations, M˙(+), were trapped and additional CIDs were performed. They gave virtually identical CID spectra, suggesting a facile interconversion between initial structures prior to fragmentation. DFT calculations at the B3LYP/6-31++G(d,p) level of theory have been used to study interconversion between different isomers of the glutathione radical cation and to examine mechanisms by which these ions fragment. The N-terminal α-carbon-centred radical cation, strongly stabilized by the captodative effect, is at the global minimum, which is 8.5 kcal mol(-1) lower in enthalpy than the lowest energy conformer of the S-centred radical cation. The barrier against interconversion is 18.1 kcal mol(-1) above the S-centred radical.  相似文献   

13.
Titanium-oxygen bonds derived from stable nitroxyl radicals are remarkably weak and can be homolyzed at 60 degrees C. The strength of these bonds depends sensitively on the ancillary ligation at titanium. Direct measurements of the rate of Ti-O bond homolysis in Ti-TEMPO complexes Cp2TiCl(TEMPO) (3) and Cp2TiCl(4-MeO-TEMPO) (4) (TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl, 4-MeO-TEMPO = 2,2,6,6-tetramethyl-4-methoxypiperidine-N-oxyl) were conducted by nitroxyl radical exchange experiments. Eyring plots gave the activation parameters, deltaH++ = 27(+/- 1) kcal/mol, deltaS++ = 6.9(+/- 2.3) eu for 3 and deltaH++ = 28(+/- 1) kcal/mol, deltaS++ = 9.0(+/- 3.0) eu for 4, consistent with a process involving the homolysis of a weak Ti-O bond to generate the transient Cp2Ti(III)Cl and the nitroxyl radical. Thermolysis of the titanocene TEMPO complexes in the presence of epoxides leads to the Cp2Ti(III)Cl-mediated ring-opening of the epoxide followed by trapping by the nitroxyl radical. The X-ray crystal structure of the Ti-TEMPO derivative, Cp2TiCl(4-MeO-TEMPO) (4), is reported. DFT (B3LYP/6-31G*) calculations and experimental studies reveal that the strength of the Ti-O bond decreases dramatically with the number of cyclopentadienyl groups on titanium. The calculated Ti-O bond strength of the monocyclopentadienyl complex 2 is 43 kcal/mol, whereas that of the biscyclopentadienyl complex 3 is 17 kcal/mol, a difference of 26 kcal/mol. These studies reveal that the strength of these Ti-O bonds can be tuned over an interesting and experimentally accessible temperature range by appropriate ligation on titanium.  相似文献   

14.
To evaluate the possibility of the decomposition of 2-deoxyribose moiety of thymidine induced by low energy electrons (LEE) attachment, the transition states and the energy barriers of the bond breaking processes of the ribose of the nucleoside have been studied theoretically by applying the density functional theory with the double zeta basis sets (DZP++). The energy barriers for the breakage of the C-C bonds (C(1')-C(2'), C(2')-C(3'), C(3')-C(4'), and C(4')-C(5')) of the ribose group of the radical anion of thymidine are found to be high (ca. 42-57 kcal/mol). The total energies of the C-C bond-broken products are significantly higher than that of the radical anion dT(*-). The decomposition of dT(*-) through the C-C bond rupture is unlikely to take place. The rupture of the C(1')-O(4') bond of dT(*-) needs an activation energy as low as 10.4 kcal/mol. However, the reversed reaction (C(1')-O(4') bond formation) needs the activation energy low as 0.3 kcal/mol. Therefore, the intermediate product LM1(C1')-(O4') is unlikely to be stable and the C(1')-O(4') bond-broken is not favored. The activation energy of the C(4')-O(4') bond rupture process amounts to 20.5 kcal/mol. The total energy of the C(4')-O(4') bond broken product is about 6.5 kcal/mol lower than that of the reactant dT(*-). The subsequent N1-glycosidic bond breaking process is found to have a very low energy barrier. Therefore, the LEE-induced base release through the C(4')-O(4') bond rupture might be a possible pathway.  相似文献   

15.
Brown KL  Zhou L 《Inorganic chemistry》1996,35(17):5032-5039
The equilibrium constant for the thermal isomerization of the diastereomeric alpha- and beta-(cyanomethyl)cobinamides (NCCH(2)Cbi(+)'s) has been measured over the temperature range 70-95 degrees C. Although the beta diastereomer is the thermodynamically more stable isomer, it is favored by the entropy change, but disfavored by the enthalpy change. In the presence of >/=5 x 10(-)(3) M concentration of the radical trap 4-hydroxy-2,2,6,6,-tetramethylpiperidinyloxy (4-HTEMPO), thermolysis of either isomer leads to cob(II)inamide and the trapped NCCH(2)(*) radical (NCCH(2)-4-HTEMPO) in high yield and no isomerization can be detected. The kinetics of the 4-HTEMPO-trapped thermal homolysis of alpha- and beta-NCCH(2)Cbi(+) have been studied in anaerobic glycerol/water mixtures of varying viscosity. The observed first-order rate constants for thermolysis show the expected inverse dependence on viscosity indicating that the process is at least partially diffusion controlled. From these data, the primary rate constant, k(1), for carbon-cobalt bond homolysis and the ratio of the rate constants for in-cage recombination and diffusional separation (k(c)/k(d)) can be extracted. The enthalpies of activation for Co-C bond homolysis are identical (29.0 +/- 0.3 kcal mol(-)(1)) while the entropy of activation is 2-fold higher for the alpha diastereomer. In water, the fractional cage efficiencies, F(c), are quite small (0.12 +/- 0.01, alpha; 0.049 +/- 0.008, beta) and invariant for each complex in the temperature range 75-95 degrees C. Assuming that the rate constant for diffusional separation of the caged radical pairs is the same for both isomers, the ratio of the in-cage recombination rate constants, k(c)(alpha)/k(c)(beta), can be calculated to be 2.6 +/- 0.6. This surprising kinetic preference for the alpha diastereomer results from enthalpic stabilization of the recombination transition state for the alpha diastereomer, since the beta diastereomer is entropically favored.  相似文献   

16.
The first crystallographic data for sigma-bonded alkylcobalt(III) phthalocyanine complexes are reported. A single-crystal X-ray structure of CH(3)CH(2)Co(III)Pc (Pc = dianion of phthalocyanine) reveals that the solid consists of centrosymmetric face-to-face dimers in which the CH(3)CH(2)Co(III)Pc units retain their square pyramidal geometry. The structure appears to be the first one reported for a five-coordinate RCo(III)(chelate) complex with an electron-deficient equatorial system. The Co-C bond in CH(3)CH(2)Co(III)Pc (2.031(5) A) is the longest found in five-coordinate RCo(III)(chel) complexes (R = simple primary alkyl group). Another X-ray study demonstrates that CH(3)Co(III)Pc(py) has a distorted octahedral geometry with axial bonds of very similar length to those in methylcobalamin. The axial bonds are shorter than those in its octaethylporphyrin analogue, in accordance with a weaker trans axial influence in six-coordinate complexes containing an electron-deficient phthalocyanine equatorial ligand. A different trend has been observed for five-coordinate RCo(III)(chel) complexes: electron-rich equatorial systems seem to make the Co-C axial bond shorter. Kinetic data for the homolysis of RCo(III)Pc complexes (R = Me, Et) in dimethylacetamide are also reported. Homolysis of ethyl derivatives is faster. The Co-C bond dissociation energies (BDEs) for the pyridine adducts of the methyl and the ethyl derivative are 30 +/- 1 and 29 +/- 1 kcal/mol, respectively. The BDE for CH(3)CoPc(py) is considerably lower than that for MeCbl despite the very similar lengths of the axial bonds in the two complexes. The results of this work do not support any correlation between the Co-C bond length and the bond strength as defined by BDE.  相似文献   

17.
Information on the accuracy of DFT functionals for redox reactions in transition metal systems is rather limited. To analyze the performance of some popular functionals for redox reactions in manganese systems, calculated O--H bond dissociation enthalpies for Mn-ligands in six different complexes are compared to experimental results. In this benchmark, B3LYP performs well with a mean absolute error of 3.0 kcal/mol. B98 gives similar results to B3LYP (error of 3.8 kcal/mol). B3LYP* gives lower O--H bond strengths than B3LYP and has a mean error of 5.0 kcal/mol. Compared to B98 and B3LYP, B3LYP* has an error trend for the manganese ligands that is more similar to the error for a free water molecule. The nonhybrid functional BLYP consistently and significantly underestimates the O--H bond strengths by approximately 20 kcal/mol. HCTH407 has a rather large mean error of 9.4 kcal/mol and shows no consistent trend. The results support the use of hybrid functionals and the present computational method for large model systems containing manganese. An example is the oxygen evolving complex in photosystem II where hybrid functionals predict the appearance of a Mn(IV)-oxyl radical before the O--O bond formation step.  相似文献   

18.
ONOONO has been proposed as an intermediate in the oxidation of nitric oxide by dioxygen to yield nitrogen dioxide. The O-O bond breaking reactions of this unusual peroxide, and subsequent rearrangements, were evaluated using CBS-QB3 and B3LYP/6-311G hybrid density functional theory. The three stable conformers (cis,cis-, cis,trans-, and trans,trans-ONOONO, based on the O-N-O-O dihedral angles of either approximately 0 degrees or approximately 180 degrees ) are predicted to have very different O-O cleavage barriers: 2.4, 13.0, and 29.8 kcal/mol, respectively. These large differences arise because bond breaking leads to correlation of the nascent NO(2) fragments with either the ground (2)A(1) state or the excited (2)B(2) state of NO(2), depending on the starting ONOONO conformation. A cis-oriented NO(2) fragment correlates with the (2)A(1) state, whereas a trans-oriented NO(2) fragment correlates with the (2)B(2) state. Each NO(2) fragment that correlates with (2)A(1) lowers the O-O homolysis energy by approximately 15 kcal/mol, similar to the approximately 17-25 kcal/mol (2)A(1) --> (2)B(2) energy difference in NO(2). Hence, this provides an unusual example of conformation-dependent electronic state selectivity. The O-O bond homolysis of cis,cis-ONOONO is particularly interesting because it has a very low barrier and arises from the most stable ONOONO conformer, and also due to obvious similarities to the well-known [3,3]-sigmatropic shift of 1,5-hexadiene, i.e., the Cope rearrangement. As an additional proof of our state selectivity postulate, a comparison is also made to breakage of the O-O bond of cis,cis-formyl peroxide, where no significant stabilization of the transition state is available because the (2)A(1) and (2)B(2) states of formyloxy radical are near-degenerate in energy. In the case of trans,trans-ONOONO, the O-O bond breaking transition state is a concerted rearrangement yielding O(2)NNO(2), whereas for cis,cis- and cis,trans-ONOONO, the initially formed NO(2) radical pairs can undergo further rearrangement to yield ONONO(2). It is proposed that previous spectroscopic observations of certain N=O stretching frequencies in argon-matrix-isolated products from the reaction of NO with O(2) (or (18)O(2)) are likely from ONONO(2), not the OONO radical as reported.  相似文献   

19.
Sugar-base C(1')-N(1) and phosphate-sugar C(5')-O(5') bond breakings of 2'-deoxycytidine-5'-monophosphates (dCMP) and 2'-deoxythymidine-5'- monophosphates (dTMP) and their radical anions have been explored theoretically at the B3LYP/DZP++ level of theory. Calculations show that the low-energy electrons attachment to the pyrimidine nucleotides results in remarkable structural and chemical bonding changes. Predicted Gibbs free energies of reaction DeltaG for the C(5')-O(5') bond dissociation process of the radical anions are -14.6 and -11.5 kcal mol(-1), respectively, and such dissociation processes may be intrinsically spontaneous in the gas phase. Furthermore, the C(5')-O(5') bond cleavage processes of the anionic dCMP and dTMP were predicted to have activation energies of 6.9 and 8.0 kcal mol(-1) in the gas phase, respectively, much lower than the barriers for the C(1')-N(1) bond breaking process, showing that the C-O bond dissociation in DNA single strand breaks is a dominant process as observed experimentally.  相似文献   

20.
The roles of nucleic acid radicals in DNA and RNA damage cannot be properly understood in the absence of knowledge of the C-H bond strengths depicting the energy cost to generate each of these radicals. However, previous theoretical studies on the relative energies of different nucleic acid radicals are not fully convincing mainly because of the use of oversimplified model compounds. In the present study we chose nucleoside 3',5'-bisphosphates as model compounds for DNA and RNA, in which the effects of both the nucleobase and phosphorylation were taken into consideration. Using the newly developed ONIOM-G3B3 methods, we calculated the gas-phase bond dissociation enthalpies and solution-phase bond dissociation free energies of all the carbohydrate C-H bonds in the model compounds. It was found that the monoanionic phosphate group (OPO3H-) was a better radical stabilization group than the OH group by 1.3 kcal/mol, whereas the neutral phosphate group (OPO3H2) was a significantly worse radical stabilization group than OH by 4.4 kcal/mol. Due to these reasons, the relative thermodynamic susceptibility of H-abstraction from deoxyribonucleotides and ribonucleotides varied considerably depending on the phosphorylation state and the charge carried by the phosphate groups. Strikingly, the bond dissociation free energy of C2'-H in ribonucleotides was dramatically lower than that of all the other C-H bonds by 5-6 kcal/mol regardless of the phosphorylation state and the charge carried by the phosphate group. This explained the previous experimental finding that radiation damage of RNA occurs mainly via H-abstraction at H-2'. A model study suggested that the strength of the hydrogen bonding interaction between the 2'-OH and 3-phosphate groups should dramatically increase from ribonucleoside 3',5'-bisphosphate to its C2' radical. The strengthened hydrogen bonding stabilized the C2' radical, rendering the C2'-H bond of RNA extraordinarily vulnerable to H-abstraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号