共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper reports the luminescence potential of the dysprosium ion (Dy3+)-doped (varying contents from 0.1 to 1.0 mol%) magnesium borate glasses prepared by the melt-quenching method. As-quenched samples were characterized systematically to determine the effects of various Dy3+ contents on their structure, physical and optical traits. The Judd−Ofelt (J−O) intensity parameters (Ω2, Ω4, Ω6) and radiative properties of the best sample (with 0.7 mol% of Dy3+ doping) was evaluated to complement the experimental optical data. The studied glasses revealed three luminescence emission peaks at 382 nm (4F9/2→6H15/2, intense Blue), 572 nm (4F9/2→6H15/2, intense Yellow) and 661 nm (4F9/2→6H11/2, weak Red) under the excitation wavelength of 347 nm. The emission intensity was first increased up to the Dy3+ content of 0.7 mol% and then quenched. The observed luminescence intensity quenching was due to the resonant energy transfer from the excited state to the neighbouring ground state of Dy3+. The obtained high value of Ω2 signified the strong degree of covalency between the Dy3+ and ligand environment. The optimum glass sample (with 0.7 mol% of Dy3+) showed higher values of the branching ratio and stimulated emission cross-cross section for the 4F9/2→6H15/2 (yellow) emission transition, indicating its potential as bright yellow luminescent material and high gain visible laser applications. 相似文献
3.
The present article discusses the up-conversion and thermometric properties of Er doped tellurite glass on excitation with 976 nm laser radiation. Temperature has been measured using fluorescence intensity ratio variation, in 528/548 and 801/828 nm, with temperature. Temperature at laser focus spot has been estimated by comparing the intensity ratios at different laser powers with the intensity ratio at different temperatures when sample was heated externally. 相似文献
4.
Ying Tian Rongrong Xu Yanyan Guo Ming Li Lili Hu Junjie Zhang 《Journal of luminescence》2012,132(8):1873-1878
This work reports the observation of emissions at 2.9 μm, 1.8 μm and 1.47 μm from Dy3+/Tm3+ codoped fluorophosphate glass upon excitation of a conventional 800 nm laser diode. Judd–Ofelt intensity parameters and radiative properties of Dy3+ ions in present glasses were calculated using the Judd–Ofelt theory. The mechanism and microparameters of energy transfer processes were investigated based on photoluminescence performance and lifetime measurements. The Dy3+/Tm3+ codoped fluorophosphate glass possessing advantageous spectroscopic characteristics as well as excellent thermal stability is a promising candidate for an efficient 2.9 μm laser. 相似文献
5.
6.
Glasses in the PbF2-PbO-SiO2 system doped with 1 mol % of rare-earth elements (Nd3+, Er3+, or Yb3+) are synthesized and studied. The glasses were heat-treated in order to obtain glass ceramics with a fluoride crystalline phase. The changes in the structure and spectral optical properties of glass ceramics with respect to initial glasses were determined by using X-ray diffraction analysis and by studying the luminescent characteristics of dopant ions. 相似文献
7.
A. D. Sontakke K. Biswas A. K. Mandal K. Annapurna 《Applied physics. B, Lasers and optics》2010,101(1-2):235-244
This paper reports the dopant ion (Nd3+) concentration effects on its luminescence properties in a new glass system based on barium-alumino-metaphosphates. Amongst the studied concentrations range of 0.276–13.31×1020 ions/cm3, the glass with 2.879×1020 ions/cm3 (1 mol%) Nd3+ concentration shows intense NIR emission from 4F3/2 excited state, followed by a decrease in emission intensity for further increase in Nd3+ ion concentration. The observed luminescence quenching is ascribed to Nd3+ self-quenching through the donor-donor migration assisted cross-relaxation mechanism. The microscopic energy transfer parameters for donor-acceptor energy transfer, C DA, and donor-donor energy migration, C DD, have been obtained from the theoretical fittings to experimental decay curves and the spectral overlap model respectively. The C DD parameters (×10?39 cm6/sec) are found to be about three orders greater than that of C DA (×10?42 cm6/sec) for Nd3+ self-quenching in this host, demonstrating that the excitation energy migration among donors is due to the hopping mechanism. The energy transfer micoparameters obtained in the present study are comparable to the values reported for commercially available laser glasses LHG-8 and Q-98. 相似文献
8.
A. C. Yanes J. Méndez-Ramos J. del-Castillo J. J. Velázquez V. D. Rodríguez 《Applied physics. B, Lasers and optics》2010,101(4):849-854
Sol-gel glasses with composition (100?x)SiO2–xSnO2 doped with 0.4 mol% of Sm3+, with x ranging from 1 to 10, have been successfully synthesized. Transparent doped nano-glass-ceramics were prepared by thermal treatment of the precursor glasses at 900°C during 4 hours, leading to nanocomposites comprising SnO2 nanocrystals embedded into an amorphous SiO2 phase. A structural analysis in terms of X-ray Diffraction and High Resolution Transmission Electron Microscopy confirms the precipitation of SnO2 nanocrystals within the glassy matrix. The mean radius of the obtained SnO2 nanocrystals, ranging from 2.1 to 4.7 nm calculated by the Scherrer and Brus equations, similar to the Bohr’s exciton radius, constitutes a wide band-gap semiconductor quantum-dot system. Energy transfer from SnO2 nanocrystal host to Sm3+ ions is confirmed by luminescence spectra and analyzed as a function of SnO2 concentration, showing an evolution that could be ascribed to selective excitation of nanocrystal sets with predetermined size. Besides, a study of the luminescence as a function of temperature helps to clarify the involved energy transfer mechanisms. 相似文献
9.
10.
11.
Sensitized thulium ultraviolet upconversion luminescence in Tm3+/Yb3+/Nd3+ triply doped nanoglass ceramics 总被引:1,自引:0,他引:1
Intense four- and five-photon ultraviolet upconversion processes through sensitization of Tm3+ ions in transparent SiO2-Al2O3-NaF-YF3 glass ceramics triply doped with Tm3+/Yb3+/Nd3+ under 796 nm excitation were investigated. Judd-Ofelt analyses evidenced the incorporation of rare-earth ions into the precipitated beta-YF3 nanocrystals. In contrast with the triply doped one, no ultraviolet upconversion luminescence was observed in the Tm3+/Nd3+ codoped glass ceramic, indicating that Yb3+ acts as bridging ions to enhance the energy transfer efficiency between Nd3+ and Tm3+. Based on the pumping power dependence of luminescence, upconversion mechanisms were proposed. 相似文献
12.
Glasses with formula 30Li2O 60B2O3xTa2O5 (10−x) Bi2O3 for x=0, 2, 4, 6 and 8 were prepared via normal melt quenching technique and characterized by refractive index and MDSC. Refractive index (μ) and glass transition temperature (Tg) are found to increase with increase in dopant concentration. Impedance spectra of the samples were recorded in the frequency range 100 Hz–5 MHz in the temperature range 175–275 °C. The plots are typical of those recorded for disordered systems. Conductivities and relaxation times are found to follow Arrhenius type of relation and activation energies are calculated. Optical absorption spectra were recorded in the wavelength range 200–900 nm range from which cutoff wavelength (λc) and optical band gap energy (Eg) are evaluated. λc is found to decrease while Eg to increase with increase in composition. FTIR spectra of the samples were recorded in the frequency range 400–1500 cm−1 which exhibit characteristic bands corresponding to BO3, BO4 stretching vibrations and BO bending vibration. Tightening of the structure is indicated by increase in the vibration of BO3 at the cost of BO4 for 8 mol% of Ta2O5. This is in support of the highest value of Tg for this sample among the series. Raman spectra of the samples were recorded in the frequency range 200–1200 cm−1. With successive addition of Ta2O5, increase in the vibration of Ta–O groups TaO6 groups to be responsible for observed increase in μ and Tg. An attempt is made to prepare tantalum doped borate glasses and study them by spectroscopic techniques. 相似文献
13.
14.
《Solid State Communications》1986,58(3):181-184
The system of Tm3+ and Pr3+ in barium borate glass is investigated for finding out the mechanism of nonradiative energy transfer at room temperature. The various constants for this system relevant to the energy transfer are also calculated. 相似文献
15.
16.
Xiuhong Pan Jianding Yu Yan Liu Shinichi Yoda Minghui Zhang Fei Ai Fei Jin Huimei Yu Weiqing Jin 《Journal of luminescence》2012,132(4):1025-1029
Er3+ doped TiO2–La2O3 glasses modified by ZrO2 have been successfully fabricated by the containerless method with incorporated Yb3+ ions as sensitizers. Under the excitation of 980 and 808 nm diode lasers, visible emissions centered at 534, 554 and 674 nm are observed, which are assigned to the Er3+ transitions of 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2, respectively. The emission signals are so strong that they can be observed by naked eyes even at pumping power as low as 20 mW. Measurements of pump-power dependent intensity and time-resolved decay behavior of upconversion luminescence show that two-photon excited state absorption (ESA) and energy transfer (ET) between rare earth ions are the predominant mechanisms for upconversion emissions. Besides, the intensity of upconversion luminescence has been enhanced by increasing the concentration of ZrO2 in these rare earth doped bulk titanate glasses. 相似文献
17.
A series of Sm3+-doped magnesium borate glasses were prepared using the melt quenching and characterized to determine the effects of various Sm3+ contents on their optical traits. The absorption and luminescence spectra of the glasses revealed ten and four significant peaks, respectively. In addition, the experimental results on the optical properties were validated using the Judd-Ofelt (J−O) analyses. The obtained J−O intensity parameters (Ωλ with λ = 2, 4, 6) confirmed the structural changes in the host network due to the Sm3+ doping. The value of Ω2 for the studied glasses indicated the covalent and asymmetric nature of the Sm3+− O2 linkages. The achieved J−O radiative parameters (quality factor, branching ratio and stimulated emission cross-section) were highest for the glass made with 0.5 mol% of Sm3+, demonstrating its lasing potency. The proposed glass compositions may be beneficial for the photonic devices. 相似文献
18.
用高温熔融法制备了Nd3+(物质的量分数2%)掺杂40B2O3-(15-χ)Nb2O5-45BaO-χLa2O3玻璃,测量了样品的吸收光谱、发射光谱和差热分析(DTA)曲线。根据Nd3+光学跃起矩阵的特点,应用Judd-Ofelt理论,从吸收光谱获得了Nd3+光学跃起的强度参数。并计算了Nd3+离子的自发辐射跃迁几率、总自发辐射几率、荧光分支比、辐射能级寿命和受激发射截面。结果表明:该体系玻璃中,随着Nb2O5 含量的增加和La2O32增大,说明材料的对称性降低;而Ω6减小,说明Nd-O键的共价性和键强增强;受激发射截面减小。DTA实验表明,随着Nb2O5含量的增加,材料的热稳定性提高。 相似文献
19.
Rare-earth doped borate glasses and glass ceramics are investigated for their potential as photon converters. Thermal processing of the as-made glass results in the formation of nanocrystals therein. For optical activation, the glasses are doped with Eu3+ and Tb3+, both enabling an intense emission under ultraviolet excitation. Differential scanning calorimetry and X-ray diffraction are applied to analyze the crystallization behavior. Compared to the undoped glass, the glass transition temperature as well as the crystallization temperature are increased with Eu3+ doping. Upon thermal processing of the as-made glasses, the transmittance is significantly reduced. Preliminary photoluminescence quantum efficiency measurements yield lower values for the glass ceramics. 相似文献
20.
Near-infrared emitting phosphors LaOCl:Nd3+/Yb3+ were prepared by the solid-state method, and their structures and luminescent properties were investigated by using X-ray diffraction and photoluminescence analysis, respectively. The studies shows that tetragonal LaOCl:Nd3+/Yb3+ can be synthesized by the solid-state reaction at 600 °C for 3 h. Upon 353 nm UV excitation, LaOCl:Nd3+/Yb3+ sample shows strong near-infrared emission lines in the region of 1060–1150 nm (corresponding to 4F3/2 → 4IJ′ transition of Nd3+, J′ = 9/2, 11/2, 13/2, 15/2) and 980–1050 nm (corresponding to 2F5/2 → 2F7/2 transition of Yb3+). The decreasing emission intensity of Nd3+ with increasing doping concentration of Yb3+ proved the energy transfer in LaOCl:Nd3+/Yb3+. The possible near-infrared emission and energy transfer mechanism between Nd3+ and Yb3+, as well as the energy transfer efficiency of LaOCl:Nd3+/Yb3+ were discussed. 相似文献