首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Haghighat  M. Moradmand 《Meccanica》2013,48(8):1947-1958
In this study, extrusion process of thick wall tubes through rotating curved dies is investigated by the method of upper bound. Total deformation region is divided into four deformation zones and a velocity field is developed for each deformation zone. The twist moments generated on container and mandrel surfaces are calculated and by equating them with the twist moment exerted by rotating die, the twisting length of tube inside the container is determined. Then, the internal powers, the powers dissipated on frictional and velocity discontinuity surfaces for a rigid-perfectly plastic material are evaluated and they are used in upper bound model. By optimizing the total power with respect to the slippage parameter between die and the tube material, the required relative extrusion pressure for a given process conditions and die angular velocity is determined. The results of finite element simulations are also presented and satisfactory agreement between the calculated and FEM results are demonstrated.  相似文献   

2.
Summary Expressions are obtained for a best upper bound to the load necessary to cause extrusion through square dies, under conditions of plane strain, using a punch face which is inclined to the axis of the extrusion container. The results are interpreted to suggest how for a given reduction that angle of punch face may be chosen which delays the onset of cavity deformation. The modes of deformation considered suggest the mechanism, whereby the oxide layers on the rear of a billet may become entrained down the centre of an extruded product.  相似文献   

3.
A rigid-triangle velocity field for combined backward-forward extrusion based on the experiments and the slip-line field is proposed in this paper. The flow separation point in the rigid-triangle velocity field is defined in accordance with the slip-line theory. A formula of minimum upper bound solution for the punch pressure of the combined extrusion is derived. The values from this formula are compared with those from the slip-line solution and with experimental results. The formula of upper bound solution can be used in practice.  相似文献   

4.
板材多点成形过程的有限元分析   总被引:8,自引:0,他引:8  
多点成形过程采用静力隐式格式进行数值模拟是比较合适的。本文建立了用于多点成形过程分析的静力隐式弹塑性大变形有限元方法 ,给出了对稳定迭代收敛过程效果较好的板壳有限单元模型、处理多点不连续接触边界的接触单元方法以及增量变形过程中应力及塑性应变计算的多步回映计算方法。基于这些方法编制了计算软件 ,应用该软件进行了矩形板的液压胀形过程及球形模具拉伸成形过程的有限元分析 ,数值计算结果与典型的实验结果及计算结果吻合很好。最后给出了球形、圆柱形目标形状的实际多点成形过程的数值模拟结果。  相似文献   

5.
Analytical and computational methods are developed for contact mechanics analysis of functionally graded materials (FGMs) that possess elastic gradation in the lateral direction. In the analytical formulation, the problem of a laterally graded half-plane in sliding frictional contact with a rigid punch of an arbitrary profile is considered. The governing partial differential equations and the boundary conditions of the problem are satisfied through the use of Fourier transformation. The problem is then reduced to a singular integral equation of the second kind which is solved numerically by using an expansion–collocation technique. Computational studies of the sliding contact problems of laterally graded materials are conducted by means of the finite element method. In the finite element analyses, the laterally graded half-plane is discretized by quadratic finite elements for which the material parameters are specified at the centroids. Flat and triangular punch profiles are considered in the parametric analyses. The comparisons of the results generated by the analytical technique to those computed by the finite element method demonstrate the high level of accuracy attained by both methods. The presented numerical results illustrate the influences of the lateral nonhomogeneity and the coefficient of friction on the contact stresses.  相似文献   

6.
Based on a rigid-plastic material model that obeys the von Mises yield criterion, the plastic behavior of foams with an open-celled structure is studied in this paper using a single unit cell. An approximate continuum plasticity model is developed within the framework of the upper bound theorem of plasticity to describe the yield behavior of foams. The microscopic velocity fields are derived for the unit cell, which satisfy the incompressibility and the kinematic boundary conditions, and expressed in macroscopic rate of deformation. From the microscopic velocity fields, a macroscopic yield function is developed for foams under multi-axial stresses and includes the effects of the hydrostatic stress due to the void presence and growth. The dependency of the derived yield surfaces of foams on their relative densities is studied. The plastic behavior of foams is also studied numerically using the finite element method. The newly developed plasticity model is compared with the finite element analysis results and other available foam models and then correlated with the finite element results.  相似文献   

7.
采用弹塑性有限元分析了条形基础作用下不排水条件的双层粘性土地基极限承载力性状。采用修正的地基承载力系数表征,并将不同的几何与土层参数条件下的数值解与上下限解和经典的经验解进行比较。表明弹塑性位移有限元法可以很好地求解地基的极限承载力问题,其求解得到的修正地基承载力系数与基于下限原理的有限元解很接近,而上限解高估了地基的极限荷载值,传统的经验解在某些条件下却偏小。  相似文献   

8.
确定复合材料宏观屈服准则的细观力学方法   总被引:3,自引:1,他引:3  
运用细观力学中的均匀化方法,分析了含周期性微结构复合材料的宏观屈服准则,并对Hill-Tsai准则进行了修正。从基于复合材料细观结构的代表性胞元入手,运用塑性极限理论中的机动分析以及有限元方法,计算了细观结构的极限载荷域。通过宏细观尺度对应关系,得到复合材料的宏观屈服准则。  相似文献   

9.
This paper addresses an implementation of the upper bound limit analysis theorem using a parallel mixed finite element formulation. The intrinsic characteristics of the adopted upper bound formulation proved to be suitable to adapt it to an efficient parallelization scheme. In order to illustrate the computational power provided by the new parallel processing method, accurate upper bound collapse load estimates, for 3D problems, are produced using a cluster of common PC machines.  相似文献   

10.
This article aims to provide a new formulation for the analysis of the extrusion process for non-axisymmetric sections. The upper bound theorem has been used to obtain a generalized kinematically admissible velocity field. The geometry of the deforming region has been formulated considering variation of the dead zone size at different angular positions and three-dimensional curved surfaces have been employed to define the entry and exit surfaces of the deformation zone. Using this analytical method, extrusion of square, rectangular and L-shaped sections were analyzed and the effect of shape complexity on material flow and dead material zone (DMZ) formation under different conditions has been investigated. Physical modelling experiments and finite element analysis were carried out to reveal the capability of the proposed theoretical method.  相似文献   

11.
为了能够在不停输油气工况下获得在役管道材料的弹塑性力学性能, 提出了一种人工智能BP (back-propagation)神经网络、小冲杆试验与有限元模拟相结合,通过确定材料真应力-应变曲线从而获得材料弹塑性力学性能的方法. 首先,通过系统改变Hollomon公式中的参数$K$, $n$值,获得457组具有不同弹塑性力学性能的假想材料本构关系, 其次,将得到的本构关系代入经试验验证的含有Gurson-Tvergaard-Needleman(GTN)损伤参数的小冲杆试验二维轴对称有限元模型,通过有限元计算得到了与真应力-应变曲线一一对应的457条不同假想材料的载荷-位移曲线,最终将两组数据作为数据库输入BP神经网络进行训练,建立了同种材料小冲杆试验载荷-位移曲线与真应力-应变曲线之间的关联关系.通过此关联关系,可利用试验得到的小冲杆载荷-位移曲线获取在役管道钢的真应力-应变曲线,从而确定其弹塑性力学性能.通过对比BP神经网络得到的X80管道钢真应力-应变曲线与单轴拉伸试验的结果以及引用现有文献中不同材料的试验数据对此关系进行验证,证明了该方法的准确性与广泛适用性.   相似文献   

12.
Two mixed elasticity problems of punch indentation into a circular plate placed without clearance in a rigid cylindrical holder with smooth walls are considered. In the first problem, the plate lies without friction on a rigid base, and in the second problem, the plate is rigidly fixed to the base. The problems are solved by a method that was developed for bodies of finite dimensions and is based on the properties of closed systems of orthogonal functions. Each of the problems is reduced to two integral equations, namely, a Volterra integral equation of the first kind for the contact pressure function and a Fredholm integral equation of the first kind for the derivatives of the displacement of the plate upper surface outside the punch. The displacement function is sought as the sum of a trigonometric series and a power function with a root singularity. After truncation, the obtained illposed system of linear algebraic equation has a stable solution. A method for solving Volterra integral equations is given. The contact pressure distribution function and the dimensionless indentation force are determined. Examples of calculation of the plate interaction with the plane punch are given. Contact problems were earlier studied for a rectangle and a circular plate with a stress-free end both without taking account of their fixation [1, 2] and with regard for their fixation [3, 4]. The solution method described here was used to study the interaction of elastic hollow cylinder of finite length with a rigid bandage and a rigid insert [5, 6]. Other papers dealing with contact problems for bodies of finite dimensions, in particular, for a circular plate, should also be mentioned. In these papers, the problems under study were solved by the method of homogeneous solutions [7, 8] and by the method of coupled series-equations [9].  相似文献   

13.
Seyyed Nosrati  Amin  Abrinia  Karen 《Meccanica》2021,56(3):689-704

Bearing region plays an important role in controlling material flow and its optimal design could lead to high quality extruded products. On the other hand, too much of bearing causes the process load to increase. Thus, there must be an optimum point where the bearing lands and the extrusion pressure are just the right values. Determining the proper bearing length is often performed using trial and error methods in the extrusion industry and numerical analysis. The aim of this study is to optimize the bearing length in forward extrusion dies using upper bound method for non-axisymmetric sections. A generalized kinematically admissible velocity field is employed to obtain uniform velocity at the exit surface of the die. Dead metal zone and bearing region define the geometry of the deformation zone. The multi-objective optimization using response surface methodology was applied to optimize the relative extrusion pressure and the deviation of the mean value for the velocity at die exit. Using this method, the proper bearing length is determined. Optimization of bearing land is performed for extrusion of rectangular and L-shaped profiles. The proposed analytical method was verified by physical modelling experiments and numerical simulations. A unique answer for the bearing design could be obtained using the suggested method in a few seconds opposing to numerical method which required many timely and costly trials. This method would be useful for die designers to get the appropriate bearing land and at the same time not to increase the process load excessively.

  相似文献   

14.
Kar  P.K.  Sahoo  S.K.  Das  N.S. 《Meccanica》2000,35(5):399-410
The present study is devoted to the upper bound analysis of extrusion of T-section bars from square billets through square dies using the modified SERR (Spatial Elementary Rigid Region) technique. Optimized values of the non-dimensional average extrusion pressure at various area reductions have been computed and compared with experimental results available in literature. The optimization process in this study consisted of three stages: (i) optimization of the extrusion pressure with respect to appropriate system variables, (ii) determination of the optimum scheme of discretization of the deformation zone for each of the three formulations (single-point, double-point and triple-point), and (iii) identifying the formulation that gives the lowest upper bound.  相似文献   

15.
This paper deals with the computational methods for limit analysis of plane strain problems. The finite element mathematical programming formula (FE-MPF) for determining the upper bound load multiplier established by the authors earlier is adopted and modified for plane strain problems. The penalty method is used to impose the incompressibility constraint. The FE-MPF is solved by a direct iteration procedure without the need of a searching process. This algorithm is not sensitive to the volumetric locking effect. And it can be easily extended to the limit analysis of three dimensional problems. The results of numerical examples are satisfactory and show the stable convergency of the present algorithm.  相似文献   

16.
This paper aims to determine the strength properties of jointed rock masses by means of the homogenization method.To reflect the microstructure of jointed rock masses,a representative element volume (R...  相似文献   

17.
The variational finite element method in displacements is used to solve the problem of geometrically nonlinear deformation and stability of cylindrical shells with a noncircular contour of the cross-section. Quadrangle finite elements of shells of natural curvature are used. In the approximations of element displacements, the displacements of elements as solids are explicitly separated. The variational Lagrange principle is used to obtain a nonlinear system of algebraic equations for the unknown nodal finite elements. The system is solved by the method of successive loadings and by the Newton-Kantorovich linearization method. The linear system is solved by the Crout method. The critical loads are determined in the process of solving the nonlinear problem by using the Sylvester stability criterion. An algorithm and a computer program are developed to study the problem numerically. The nonlinear deformation and stability of shells with oval and elliptic cross-sections are investigated in a broad range of variation of the elongation and ellipticity parameters. The shell critical loads and buckling modes are determined. The influence of the deformation nonlinearity, elongation, and ellipticity of the shell on the critical loads is examined.  相似文献   

18.
自然单元法是一种以自然邻近插值为试函数的新兴无网格数值方法,其形函数的计算不涉及矩阵求逆,也不需要任何人为参数。为了充分发挥自然单元法的优势,本文基于极限分析上限定理建立了轴对称结构极限上限分析的整套求解算法。轴对称结构的位移场由自然邻近插值构造,并且采用罚函数法处理材料的不可压条件。为了消除目标函数非光滑所引起的数值困难,采用逐步识别刚性区和塑性区,并对两者用不同方法进行处理。数值算例结果表明,本文提出的轴对称结构极限上限分析方法是行之有效的。  相似文献   

19.
20.
This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号