首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recombinant Escherichia coli (E. coli) bacteria expressing green fluorescent protein (GFP) was used as a model system to investigate the antimicrobial activities of Ag nanoparticles (NPs). A convenient in situ method of Ag NP synthesis using sodium borohydride, in the bacterial growth medium, was developed to produce preformed NPs for the study. Fluorescence spectroscopic and microscopic techniques allowed rapid detection of time-dependent changes in bacterial growth as well as fluorescence characteristics in the presence of Ag NPs. In addition, X-ray diffraction, UV-vis spectroscopic, and transmission electron microscopic measurements were carried out to understand the effect of Ag NPs on the bacteria. Our observations indicated that Ag NPs, above a certain concentration, not only were bactericidal but also were found to reduce the sizes of treated bacteria in comparison to untreated ones. Cell lysis of Ag NP-treated bacteria was suggested by the increased GFP fluorescence obtained in the medium. In vitro DNA-Ag NP interaction was detected by spectrophotometric analysis. However, electrophoresis studies indicated no direct effect of Ag NPs on DNA or protein profiles.  相似文献   

2.
The loading of noble‐metal nanoparticles (NMNPs) onto various carriers to obtain stable and highly efficient catalysts is currently an important strategy in the development of noble metal (NM)‐based catalytic reactions and their applications. We herein report a nanowire supramolecular assembly constructed from the surfactant‐encapsulating polyoxometalates (SEPs) CTAB‐PW12, which can act as new carriers for NMNPs. In this case, the Ag NPs are loaded onto the SEP nanowire assembly with a narrow size distribution from 5 to 20 nm in diameter; the average size is approximately 10 nm. The Ag NPs on the nanowire assemblies are well stabilized and the over agglomeration of Ag NPs is avoided owing to the existence of well‐arranged polyoxometalate (POM) units in the SEP assembly and the hydrophobic surfactant on the surface of the nanowire assembly. Furthermore, the loading amount of the Ag NPs can be adjusted by controlling the concentration of the AgNO3 aqueous solution. The resultant Ag/CTAB‐PW12 composite materials exhibit high activity and good stability for the catalytic reduction of 4‐nitrophenol (4‐NP) with NaBH4 in isopropanol/H2O solution. The NMNPs‐loaded SEP nanoassembly may represent a new composite catalyst system for application in NM‐based catalysis.  相似文献   

3.
《化学:亚洲杂志》2017,12(14):1724-1729
We report on the development of raspberry‐like silica structures formed by the adsorption of 8‐hydroxypyrene‐1,3,6‐trisulfonate (HPTS)@silica nanoparticles (NPs) on rhodamine B isothiocyanate (RBTIC)@silica NPs for ratiometric fluorescence‐based pH sensing. To overcome the well‐known problem of dye leaching which occurs during encapsulation of anionic HPTS dye in silica NPs, we utilized a polyelectrolyte‐assisted incorporation of the anionic HPTS. The morphological and optical characterization of the as‐synthesized dye‐doped NPs and the resulting nanohybrids were carried out. The pH‐sensitive dye, HPTS, incorporated in the HPTS‐doped silica NPs provided a pH‐dependent fluorescence response while the RBITC‐doped silica provided the reference signal for ratiometric sensing. We evaluated the effectiveness of the nanohybrids for pH sensing; the ratio of the fluorescence emission intensity at 510 nm and 583 nm at excitation wavelengths of 454 nm and 555 nm, respectively. The results showed a dynamic response in the acidic pH range. With this approach, nanohybrids containing different dyes or receptors could be developed for multifunctioning and multiplexing applications.  相似文献   

4.
Metal‐enhanced processes arising from the coupling of a dye with metallic nanoparticles (NPs) have been widely reported. However, few studies have simultaneously investigated these mechanisms from the viewpoint of dye fluorescence and photoactivity. Herein, protoporphyrin IX (PpIX) is grafted onto the surface of silver core silica shell NPs in order to investigate the effect of silver (Ag) localized surface plasmon resonance (LSPR) on PpIX fluorescence and PpIX singlet oxygen (1O2) production. Using two Ag core sizes, we report a systematic study of these photophysical processes as a function of silica (SiO2) spacer thickness, LSPR band position and excitation wavelength. The excitation of Ag NP LSPR, which overlaps the PpIX absorption band, leads to the concomitant enhancement of PpIX fluorescence and 1O2 production independently of the Ag core size, but in a more pronounced way for larger Ag cores. These enhancements result from the increase in the PpIX excitation rate through the LSPR excitation and decrease when the distance between PpIX and Ag NPs increases. A maximum fluorescence enhancement of up to 14‐fold, together with an increase in photogenerated 1O2 production of up to five times are obtained using 100 nm Ag cores coated with a 5 nm thick silica coating.  相似文献   

5.
In this study, we developed an approach to fabricate novel 1D Ag NWs‐Ag NPs hybrid substrate for enhanced fluorescene detection of protoporphyrin IX (PpIX) based on surface plasmon‐enhanced fluorescence. The Ag NWs‐Ag NPs hybrid was synthesized by combining the hydrothermal method and self‐assembly method with the asisstance of polyvinylpyrrolidone (PVP). When the Ag NWs‐Ag NPs hybrid was deposited on the glass substrate and employed as active substrate to detect PpIX, the fluorescence intensity of PpIX was enhanced greatly due to the coupling effect of localized surface plasmon‐localized surface plasmon (LSP‐LSP) and localized surface plasmon‐surface plasmon propagation (LSP‐SPP) which induced great enhancement of the electromagnetic field. Furthermore, the enhancement effect was approximately linear when the concentration of PpIX was ranged from 1×10?7 mol/L to 2×10?5 mol/L, and the photobleaching phenomenon of PpIX was reduced greatly, indicating that the fabricated Ag NWs‐Ag NPs hybrid substrate had well performance for PpIX imaging. This work provides an effective approach to prepare highly sensitive and stable fluorescence enhancement substrate, and has great potential application in fluorescence imaging.  相似文献   

6.
The effects of ribonuclease A (RNase), lysozyme, trypsin, and bovine serum albumin (BSA) on the J-aggregation behavior of 3,3'-bis[sulfopropyl]-5-methoxy-4',5'-benzo-9-ethylthiacarbocyanine (1), 3,3'-bis[sulfopropyl]-4,5,4',5'-dibenzo-9-ethylthiacarbocyanine (2), and 3,3'-bis[sulfopropyl]-5,5'-dimethoxy-9-ethylthiacarbocyanine (3) were studied in aqueous solution. The formation of J-aggregates at pH 6 is induced by RNase for 1-3, by lysozyme for 1 and 2, and by trypsin for 2. The formation of J-aggregates correlates with decay of the dimers and is supported by induced circular dichroism spectra. The concentration of J-aggregates for lysozyme/1 increases with an increase in the protein/dye concentration ratio, reaches a plateau, and then gradually decreases. J-aggregates are characterized by relatively weak fluorescence; e.g., Phi(f) = 0.01 for lysozyme/1, and by a small Stokes shift of 6-8 nm, indicating almost resonance fluorescence. J-aggregation proceeds in the range of seconds to minutes with sigmoidal type kinetic curves for trypsin/2 and nonsigmoidal kinetics in the other cases. The presence of BSA, in contrast to RNase, lysozyme, and trypsin, results in deaggregation of dimers of 1-3 and formation of bound monomers and exhibits intense fluorescence from the trans-monomer; e.g., Phi(f) = 0.22 for BSA/1. Generally, the binding of 1-3 to the proteins is a cooperative process, where the number of binding sites changes from n = 15 for lysozyme/1 to n = 6 for trypsin/2 and n = 0.3 and 1 for BSA/3.  相似文献   

7.
Films of pseudoisocyanine iodide in a cellulose acetate matrix were prepared by spin coating and characterized by UV/Vis absorption and fluorescence spectroscopies. The comparison with self-supported films of the same dye enabled analysing the role of the matrix in the aggregation of pseudoisocyanine iodide ([PIC]I). It was proved that cellulose acetate is a suitable support for [PIC]I J-aggregates, which form during spinning, as shown by a very sharp J-band in the absorption spectra. This indicates a perfect coherence between stacked monomers in the supported J-aggregates. It was possible to individualize the emission spectrum of [PIC]I J-aggregates in cellulose acetate, by decomposition of the steady-state fluorescence spectra of the films. The dependence on the excitation wavelength of the relative emission intensities of monomers and J-aggregates, for lambda(em) = 587 nm, lead to confirm that the latter species have an absorption maximum at approximately 500 nm in cellulose acetate. Finally, polarised absorption spectra of films obtained by the vertical spin coating technique showed that cellulose acetate allows a partial orientation of J-aggregates.  相似文献   

8.
This paper describes a promising method to synthesize supported metal catalysts based on a photochromic reaction. Highly dispersed Ag nanoparticles (NPs) with a mean diameter of ca. 10 nm stabilized by 3-mercaptopropionic acid (3-MPA) were prepared as a colloidal precursor solution. The zeta electric potential was found to be negatively charged in the region of pH higher than 5 due to the presence of dissociated carboxylate ions (-COO(-)), which led to electric repulsion between Ag NPs and kept the solution in a highly dispersed colloidal state. In the presence of photochromic molecules, trans-2-hydroxychalcone, the photo-irradiation gradually decreased the electric charge on the nanoparticles owing to the formation of flavylium cations, which induced the assembly of Ag NPs. Such photo-induced assembly-dispersion control of Ag NPs enables size selective deposition on a catalyst support, which is controlled by varying the photo-irradiation time.  相似文献   

9.
The spectrophotometric and thermodynamic properties of molecular complexes of flavin mononucleotide (FMN) (riboflavin 5′-phosphate) with some β-carboline derivatives have been investigated in aqueous solution. The molecular associations have been examined by means of electronic absorption spectra, since in each a new charge-transfer band has been located, and also the variation of the fluorescence emission of FMN on the solutions has been observed. The formation constants for the molecular complexes were determined from absorption data using the Foster—Hammick—Wardley method. The quenching phenomenon observed in FMN fluorescence is related to the concentration of the β-carboline derivatives, allowing the calculation of the quenching constants for FMN-β-carboline complexes. Thermodynamic parameters have been determined from the values of association constants for the molecular complexes at various temperatures. The influence of substituents in the β-carboline molecule on the stability of the complexes formed was also investigated.  相似文献   

10.
Silver nanoparticles (Ag NPs) were efficiently generated by in situ reduction of silver ions via butylated hydroxytoluene (BHT), in poly(methyl methacrylate). The characterization of Ag/PMMA by TEM, SEM, XRD, and FTIR indicated that Ag NPs with a face center cubic (fcc) crystal structure and a mean diameter of about 30 nm were dispersed in PMMA matrix with a relatively uniform distribution. In addition, the results of UV–Vis spectroscopy indicated that optical properties of the nanocomposite appeared mainly dependent on the reaction time and temperature. Increasing the reaction time and temperature make higher yield of Ag NPs. A provisional reduction mechanism was also proposed for the formation of the Ag NPs.  相似文献   

11.
Poly(N,N′‐methylenebisacrylamide–4‐vinylpyridine) (P(MBA‐4VP)) nanowires loaded with silver nanoparticles (Ag NPs) have been fabricated by silver metallogel template copolymerization, and subsequently, silver ions are reduced instead of the template being removed. Ag NPs with a diameter of 5–15 nm were dispersed throughout the core of P(MBA‐4VP) nanowires. The size and distribution of the formed Ag NPs could be finely controlled by reduction time. The pH sensitivity of P(MBA‐4VP) nanowires offers the possibility of Ag NP release from the nanowires under acidic conditions. The photocatalytic performance of the P(MBA‐4VP) nanowires loaded with Ag NPs was evaluated for the degradation of methylene blue (MB) under UV light irradiation. Their rate of degradation is dependent on the content and size of the Ag NPs, as well as the pH values of the MB solution. Moreover, the P(MBA‐4VP) nanowires loaded with Ag NPs exhibited high photostability, and the photocatalytic efficiency reduced by only 1.81 % after being used three times.  相似文献   

12.
The J-aggregation of Cyanine-1dye in the presence of carboxymethyl amylose (CMA) is described. The J-aggregation requires a large excess CMA concentration; the J-band maximum appears in the concentration range, [CMA]/[dye] = 10-50, depending on the degree of substitution (DS) of carboxylation, where [CMA] is the concentration of polymer repeat units. An extraordinarily large induced circular dichroism (CD) is observed from J-aggregates of the achiral cyanine dye in association with a random coil CMA, suggesting that the CMA is transformed into a helix. The magnitude of CD intensity increases with increasing DS of CMA and pH up to neutral (where a maximum J-aggregation occurs), while the CMA-bound dye monomer and H-aggregates (occurring at pH > or = 9) exhibit no induced CD. The trend in the CD intensity (of the J-aggregates) is in parallel with the fluorescence intensity of the J-aggregates. This suggests that binding of the J-aggregates onto the template CMA is sterically controlled by the asymmetric environment of glucose residues (of CMA) so that more twisting power is exerted with increasing DS (of CMA), rendering the cyanine dye/CMA complex a more rigid (a high fluorescence intensity) super-helix. This is also revealed by the AFM image of a long strand.  相似文献   

13.
《印度化学会志》2022,99(11):100770
Individual and mix metal nanoparticles of Ag and Au have been prepared by the reducing method where citrate was used as reducing/stabilizing agent. The prepared NPs were characterized with UV/Visible and transmission electron microscopic (TEM) tools. The characteristic peak in UV/Visible at 525, 444 and 531 nm for Au, Ag and Ag/Au mix NPs respectively, gave primary confirmation of prepared NPs. TEM analysis showed the size of nanoparticles as 44.04, 19.78 and 30.93 nm for Ag, Au and Ag/Au mix NPs respectively. Congo and alizarin red dye interactions studies have been performed with prepared NPs to see the removal of the pollutants from water. Congo dye has shown weaker interaction as compared to alizarin due to structural symmetry. Amongst all, the AgNPs have shown maximum 67% and 75% interactions with Congo red and alizarin respectively due to high negative charges on the surface. The Au, Ag and Au/Ag mix NPs have shown stronger interaction with bovine serum albumin (BSA) protein up to 51, 59, 55% respectively, estimated through UV/Vis and physicochemical analysis. The biological evaluations of the prepared NPs have shown their antibacterial activity against Gram + ve and –ve species showing up to 9 cm zone of inhibition. The BSA interaction and antibacterial activity of NPs reveal the importance of NPs in medicinal field.  相似文献   

14.
Low-molecular-weight organic hydrogelators (LMHGs) that can rigidify water into soft materials are desirable in various applications. Herein, we report the excellent hydrogelating properties of a simple synthetic auxin-amino-acid conjugate, naphthalene-1-acetamide of L-phenylalanine (1-NapF, M(w)=333.38?Da), which gelated water even at 0.025?wt?%, thereby making it the most-efficient LMHG known. Optically transparent gels that exhibited negligible scattering in the range 350-900?nm were obtained. A large shift from the theoretical pK(a) value of the gelator was observed. The dependence of the minimum gelator concentration (MGC) and the gel-melting temperatures on the pH value indicated the importance of H-bonding between the carboxylate groups on adjacent phenylalanine molecules in the gelator assembly. FTIR spectroscopy of the xerogels showed a β-sheet-like assembly of the gelator. Variable-temperature (1)H?NMR spectroscopy demonstrated that π stacking of the aromatic residues was also partly involved in the gelator assembly. TEM of the xerogel showed the presence of a dense network of thin, high-aspect-ratio fibrillar assemblies with diameters of about 5?nm and lengths that exceeded a few microns. Rheology studies showed the formation of stable gels. The entrapment of water-soluble dyes afforded extremely fluorescent gels that involved the formation of J-aggregates by the dye within gel. A strong induced-CD band established that the RhoB molecules were interacting closely with the chiral gelator aggregates. H-bonding and electrostatic interactions, rather than intercalation, seemed to be involved in RhoB binding. The addition of chaotropic reagents, as well as increasing the pH value, disassembled the gel and promoted the release of the entrapped dye with zero-order kinetics.  相似文献   

15.
Zhang N  Liu Y  Tong L  Xu K  Zhuo L  Tang B 《The Analyst》2008,133(9):1176-1181
A novel assembly of Au NPs-beta-CDs-FL for the fluorescent probing of cholesterol (Cho) is provided. Gold nanoparticles (Au NPs) possessing a high extinction coefficient function can be used as excellent fluorescent quenchers in Au NP-fluorophore composites. Inclusion of fluorescein (FL) into beta-cyclodextrin (beta-CD) makes fluorescence resonance energy transfer (FRET) occur through the donor and quencher nearby. FRET switches off because of the cholesterol-induced release of FL from beta-CD cavity, which results in the fluorescence recovery of the quenched dye. Spectral analysis supported the idea that the signal enhancement was attributed to the formation of an inclusion complex of the cholesterol moiety in beta-CD, resulting in separation of FL from the Au NPs. This phenomenon is explained by the guest-induced location change of the FL from inside to outside the cavity, suggesting that the assembly of Au NPs-beta-CDs-FL is effective as a fluorescent probe for cholesterol recognition. The fluorescence increase is proportional to the concentration of cholesterol in the range of approx. 30 nM to 15 muM. A concentration of cholesterol as low as 9 nM would be readily detected. The precision of the method applied to the determination of quantities of cholesterol present in human blood serum were satisfactory.  相似文献   

16.
Flow field-flow fractionation (Fl-FFF) with off-line electrothermal atomic absorption spectrometry (ETAAS) detection was developed and employed for particle size characterization of Ag NPs stabilized by citrate, pectin, and alginate. Citrate stabilized-Ag NPs were prepared from sodium borohydride reduction of silver nitrate. Sodium citrate was used as the capping agent to stabilize Ag NPs and prevent the aggregation process. Pectin stabilized- and alginate stabilized-Ag NPs were prepared from ascorbic acid reduction of silver nitrate. Pectin and alginate were used as the capping agent for pectin stabilized- and alginate stabilized-Ag NPs, respectively. Three types of Ag NPs were characterized by using FlFFF, zeta potentiometer, and TEM technique. The mean particle sizes of Ag NPs as characterized by FlFFF were 9 nm, 19 nm, and 45 nm for citrate stabilized-, pectin stabilized-, and alginate stabilized-Ag NPs, respectively, in deionized water. Further, FlFFF with ETAAS detection was employed to observe the aggregation of Ag NPs of various types in environmental water in the absence and presence of humic acid. Citrate stabilized-Ag NPs underwent aggregation more rapid than the pectin stabilized- and alginate stabilized-Ag NPs as the latter two types were sterically stabilized. Further, humic acid could prolong the stability of Ag NPs in the environment.  相似文献   

17.
J-aggregates of 2-hydroquinone-5,10,15,20-tetra(p-hydroxyphenyl)porphyrin (HQTHPP) induced by N-lauroyl sarcosine (SKL) in aqueous neutral solutions have been studied by optical absorption, fluorescence, and resonance light-scattering spectroscopies. As SKL concentration increases, the spectra evolve to reveal the presence of four independent species with relative concentration. The most important species is J-aggregates. The J-aggregates have two strong exciton bands corresponding to the B-band and Q-bands of HQTHPP monomers, and are found to be stable when the surfactant concentration is below 8.0 mmol/L. But above 8.0 mmol/L, the J-aggregates dissolve gradually into another species: porphyrin monomers. The total fluorescence of HQTHPP is quenched due to the aggregate formation. A strong and sharply peaked resonance light-scattering signal (>1800 counts/s, centered at 490 nm) is observed just slightly to the red of the J-aggregate absorption maximum. In the case of cetyltrimethyl-ammonium bromide, increasing surfactant concentrations have only shown to favor solubilization of porphyrin monomers. Evidently, the nature of polar headgroups of surfactants influences the tendency of THPP to aggregate.  相似文献   

18.
Montmorillonite was thermally treated at several temperatures to reduce the charge density of its layer surface. Absorption and fluorescence (steady-state and time-resolved) spectroscopies are now applied to study the adsorption of rhodamine 3B (R3B) laser dye in reduced charge montmorillonites (RCMs) in aqueous suspensions. The decrease in the charge density increases the intermolecular distance between adsorbed R3B molecules, reducing the tendency of the dye to self-associate. H-type and J-type aggregates of R3B in RCMs are spectroscopically characterized, the fluorescent J-aggregates being more extensively formed by decreasing the charge density. Both the reduction in the dye aggregation and the formation of J-type aggregates enhance the fluorescence efficiency of R3B dye adsorbed in montmorillonite particles. Absorption with linearly polarized light reveals that the H-aggregates are more disposed toward the perpendicular of the clay surface than the monomer and J-aggregates species.  相似文献   

19.
Palm pollen (PP) has been widely used in nutrition, pharmaceutical and cosmetic industries. In the present study, we explored the potential of PP in the synthesis of a silver nanoparticle (Ag NP). PP was used as both reducing and stabilizing agent. The Ag/PP nanocomposite was examined by field emission electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet spectroscopy and zeta potential measurement. The biosynthesized NPs showed surface plasmon resonance centered at 425 nm with an average particle size measured to be 23 nm and a zeta potential of ?30.9 mV. Prominent FT-IR signals were obtained and ascribed to phenolic and carbohydrate compounds involved in the formation of the Ag NPs, and proteins which participated in stabilization of the Ag NPs. The biologically synthesized Ag NPs were found to be extremely effective against E. coli (13.8 ± 0.25 mm) with a minimum inhibitory concentration of 20 µg/mL. Thus, such biosynthesized Ag NPs can be used in medicinal applications.  相似文献   

20.
Cellulose/silver nanoparticles (Ag NPs) composites were prepared and their catalytic performance was evaluated. Porous cellulose microspheres, fabricated from NaOH/thiourea aqueous solution by a sol–gel transition processing, were served as supports for Ag NPs synthesis by an eco-friendly hydrothermal method. The regenerated cellulose microspheres were designed as reducing reagent for hydrothermal reduction and also micro-reactors for controlling growth of Ag NPs. The structure and properties of obtained composite microspheres were characterized by Optical microscopy, UV–visible spectroscopy, WXRD, SEM, TEM and TG. The results indicated that Ag NPs were integrated successfully and dispersed uniformly in the cellulose matrix. Their size (8.3–18.6?nm), size distribution (3.4–7.7?nm), and content (1.1–4.9?wt%) were tunable by tailoring of the initial concentration of AgNO3. Moreover, the shape, integrity and thermal stability were firmly preserved for the obtained composite microspheres. The catalytic performance of the as-prepared cellulose/Ag composite microspheres was examined through a model reaction of 4-nitrophenol reduction in the presence of NaBH4. The composites microspheres exhibited good catalytic activity, which is much high than that of hydrogel/Ag NPs composites and comparable with polymer core–shell particles loading Ag NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号