首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Optimal control problems of mixed variational inequalities of the second kind arising in flow of Bingham viscoplastic materials are considered. Two type of active-inactive set regularizing functions for the control problems are proposed and approximation properties and optimality conditions are investigated. A detailed first order optimality system for the control problem is obtained as limit of the regularized optimality conditions. For the solution of each regularized system a globalized semismooth Newton algorithm is constructed and its computational performance is investigated.  相似文献   

2.
This paper is devoted to the numerical simulation of two-dimensional stationary Bingham fluid flow by semismooth Newton methods. We analyze the modeling variational inequality of the second kind, considering both Dirichlet and stress-free boundary conditions. A family of Tikhonov regularized problems is proposed and the convergence of the regularized solutions to the original one is verified. By using Fenchel’s duality, optimality systems which characterize the original and regularized solutions are obtained. The regularized optimality systems are discretized using a finite element method with (cross-grid P1)-Q0 elements for the velocity and pressure, respectively. A semismooth Newton algorithm is proposed in order to solve the discretized optimality systems. Using an additional relaxation, a descent direction is constructed from each semismooth Newton iteration. Local superlinear convergence of the method is also proved. Finally, we perform numerical experiments in order to investigate the behavior and efficiency of the method.  相似文献   

3.
This paper deals with elliptic optimal control problems for which the control function is constrained to assume values in {0, 1}. Based on an appropriate formulation of the optimality system, a semismooth Newton method is proposed for the solution. Convergence results are proved, and some numerical tests illustrate the efficiency of the method.  相似文献   

4.
We consider a reformulation of mathematical programs with complementarity constraints, where by introducing an artificial variable the constraints are converted into equalities which are once but not twice differentiable. We show that the Lagrange optimality system of such a reformulation is semismooth and BD-regular at the solution under reasonable assumptions. Thus, fast local convergence can be obtained by applying the semismooth Newton method. Moreover, it turns out that the squared residual of the Lagrange system is continuously differentiable (even though the system itself is not), which opens the way for a natural globalization of the local algorithm. Preliminary numerical results are also reported.  相似文献   

5.
This paper is concerned with numerical methods for solving a semi-infinite programming problem. We reformulate the equations and nonlinear complementarity conditions of the first order optimality condition of the problem into a system of semismooth equations. By using a perturbed Fischer–Burmeister function, we develop a smoothing Newton method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration, only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by the smoothing Newton method converges superlinearly/quadratically.  相似文献   

6.
While generalized equations with differentiable single-valued base mappings and the associated Josephy–Newton method have been studied extensively, the setting with semismooth base mapping had not been previously considered (apart from the two special cases of usual nonlinear equations and of Karush–Kuhn–Tucker optimality systems). We introduce for the general semismooth case appropriate notions of solution regularity and prove local convergence of the corresponding Josephy–Newton method. As an application, we immediately recover the known primal-dual local convergence properties of semismooth sequential quadratic programming algorithm (SQP), but also obtain some new results that complete the analysis of the SQP primal rate of convergence, including its quasi-Newton variant.  相似文献   

7.
A Smoothing Newton Method for Semi-Infinite Programming   总被引:5,自引:0,他引:5  
This paper is concerned with numerical methods for solving a semi-infinite programming problem. We reformulate the equations and nonlinear complementarity conditions of the first order optimality condition of the problem into a system of semismooth equations. By using a perturbed Fischer–Burmeister function, we develop a smoothing Newton method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration, only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by the smoothing Newton method converges superlinearly/quadratically.  相似文献   

8.
A class of semismooth Newton methods for unilaterally constrained variational problems modeling cracks under a nonpenetration condition is introduced and investigated. On the continuous level, a penalization technique is applied that allows to argue generalized differentiability of the nonlinear mapping associated to its first‐order optimality characterization. It is shown that the corresponding semismooth Newton method converges locally superlinearly. For the discrete version of the problem, fast local as well as global and monotonous convergence of a discrete semismooth Newton method are proved. A comprehensive report on numerical tests for the two‐dimensional Lamé problem with three collinear cracks under the nonpenetration condition ends the article. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

9.
A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.  相似文献   

10.
A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multigrid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative pointwise smoother which can be formulated as a local semismooth Newton iteration. Results of numerical experiments and theoretical two-grid local Fourier analysis estimates demonstrate that the proposed scheme is able to solve parabolic state-constrained optimality systems with textbook multigrid efficiency.  相似文献   

11.
In this paper we present some semismooth Newton methods for solving the semi-infinite programming problem. We first reformulate the equations and nonlinear complementarity conditions derived from the problem into a system of semismooth equations by using NCP functions. Under some conditions a solution of the system of semismooth equations is a solution of the problem. Then some semismooth Newton methods are proposed for solving this system of semismooth equations. These methods are globally and superlinearly convergent. Numerical results are also given.  相似文献   

12.
In this paper, a new smoothing Newton method is proposed for solving constrained nonlinear equations. We first transform the constrained nonlinear equations to a system of semismooth equations by using the so-called absolute value function of the slack variables, and then present a new smoothing Newton method for solving the semismooth equations by constructing a new smoothing approximation function. This new method is globally and quadratically convergent. It needs to solve only one system of unconstrained equations and to perform one line search at each iteration. Numerical results show that the new algorithm works quite well.  相似文献   

13.
A Lavrentiev type regularization technique for solving elliptic boundary control problems with pointwise state constraints is considered. The main concept behind this regularization is to look for controls in the range of the adjoint control-to-state mapping. After investigating the analysis of the method, a semismooth Newton method based on the optimality conditions is presented. The theoretical results are confirmed by numerical tests. Moreover, they are validated by comparing the regularization technique with standard numerical codes based on the discretize-then-optimize concept. The authors acknowledge support through DFG Research Center “Mathematics for Key Technologies” (FZT 86) in Berlin.  相似文献   

14.
We propose an algorithm, semismooth Newton coordinate descent (SNCD), for the elastic-net penalized Huber loss regression and quantile regression in high dimensional settings. Unlike existing coordinate descent type algorithms, the SNCD updates a regression coefficient and its corresponding subgradient simultaneously in each iteration. It combines the strengths of the coordinate descent and the semismooth Newton algorithm, and effectively solves the computational challenges posed by dimensionality and nonsmoothness. We establish the convergence properties of the algorithm. In addition, we present an adaptive version of the “strong rule” for screening predictors to gain extra efficiency. Through numerical experiments, we demonstrate that the proposed algorithm is very efficient and scalable to ultrahigh dimensions. We illustrate the application via a real data example. Supplementary materials for this article are available online.  相似文献   

15.
 Semismooth Newton methods constitute a major research area for solving mixed complementarity problems (MCPs). Early research on semismooth Newton methods is mainly on infeasible methods. However, some MCPs are not well defined outside the feasible region or the equivalent unconstrained reformulations of other MCPs contain local minimizers outside the feasible region. As both these problems could make the corresponding infeasible methods fail, more recent attention is on feasible methods. In this paper we propose a new feasible semismooth method for MCPs, in which the search direction asymptotically converges to the Newton direction. The new method overcomes the possible non-convergence of the projected semismooth Newton method, which is widely used in various numerical implementations, by minimizing a one-dimensional quadratic convex problem prior to doing (curved) line searches. As with other semismooth Newton methods, the proposed method only solves one linear system of equations at each iteration. The sparsity of the Jacobian of the reformulated system can be exploited, often reducing the size of the system that must be solved. The reason for this is that the projection onto the feasible set increases the likelihood of components of iterates being active. The global and superlinear/quadratic convergence of the proposed method is proved under mild conditions. Numerical results are reported on all problems from the MCPLIB collection [8]. Received: December 1999 / Accepted: March 2002 Published online: September 5, 2002 RID="★" ID="★" This work was supported in part by the Australian Research Council. Key Words. mixed complementarity problems – semismooth equations – projected Newton method – convergence AMS subject classifications. 90C33, 90C30, 65H10  相似文献   

16.
求解半光滑方程组的近似Newton法   总被引:1,自引:0,他引:1  
本文提出了求解半光滑方程组的近似Newton法,并证明了该算法的局部超线性收敛性。数值结果表明 该算法是有效的。  相似文献   

17.
We introduce a partial proximal point algorithm for solving nuclear norm regularized matrix least squares problems with equality and inequality constraints. The inner subproblems, reformulated as a system of semismooth equations, are solved by an inexact smoothing Newton method, which is proved to be quadratically convergent under a constraint non-degeneracy condition, together with the strong semi-smoothness property of the singular value thresholding operator. Numerical experiments on a variety of problems including those arising from low-rank approximations of transition matrices show that our algorithm is efficient and robust.  相似文献   

18.
郦旭东 《计算数学》2020,42(4):385-404
在大数据时代,随着数据采集手段的不断提升,大规模复合凸优化问题大量的出现在包括统计数据分析,机器与统计学习以及信号与图像处理等应用中.本文针对大规模复合凸优化问题介绍了一类快速邻近点算法.在易计算的近似准则和较弱的平稳性条件下,本文给出了该算法的全局收敛与局部渐近超线性收敛结果.同时,我们设计了基于对偶原理的半光滑牛顿法来高效稳定求解邻近点算法所涉及的重要子问题.最后,本文还讨论了如何通过深入挖掘并利用复合凸优化问题中由非光滑正则函数所诱导的非光滑二阶信息来极大减少半光滑牛顿算法中求解牛顿线性系统所需的工作量,从而进一步加速邻近点算法.  相似文献   

19.
A mesh-independent and second-order accurate multigrid strategy to solve control-constrained parabolic optimal control problems is presented. The resulting algorithms appear to be robust with respect to change of values of the control parameters and have the ability to accommodate constraints on the control also in the limit case of bang-bang control. Central to the development of these multigrid schemes is the design of iterative smoothers which can be formulated as local semismooth Newton methods. The design of distributed controls is considered to drive nonlinear parabolic models to follow optimally a given trajectory or attain a final configuration. In both cases, results of numerical experiments and theoretical twogrid local Fourier analysis estimates demonstrate that the proposed schemes are able to solve parabolic optimality systems with textbook multigrid efficiency. Further results are presented to validate second-order accuracy and the possibility to track a trajectory over long time intervals by means of a receding-horizon approach.  相似文献   

20.
In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best theoretical results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We close the paper with some preliminary computational tests on the use of a semismooth Newton method to solve the equation derived from the new reformulation. We also compare its performance with the Newton method applied to classical reformulations based on the Fischer-Burmeister function and on the minimum. The new reformulation combines the best features of the classical ones, being as easy to solve as the reformulation that uses the Fischer-Burmeister function while requiring as few Newton steps as the one that is based on the minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号