首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 492 毫秒
1.
近年来,低温热处理刚玉出现在宝石交易市场,由于其特征容易与天然刚玉混淆,如何鉴定低温热处理刚玉成为宝石实验室的研究热点。在弱氧化氛围,360,610和650 ℃条件下,先后对9粒刚玉进行了热处理实验,并采用显微拉曼定性分析刚玉中的包裹体、显微镜下观察包裹体形貌、显微红外光谱分析含水矿物包裹体中羟基的特征峰等方法,对刚玉低温热处理前后的特征进行了对比研究。热处理实验揭示:600 ℃左右温度、弱氧化氛围已能有效去除刚玉中的蓝色调,并增强红色,可达到热处理改善或改变刚玉颜色的目的。研究结果表明:针铁矿、高岭石、勃姆石等含水矿物包体主要存在于刚玉的开放裂隙中,硬水铝石、磷灰石、云母等含水矿物包体主要存在于刚玉晶体中。针铁矿热处理前红外光谱可显示与羟基相关的3 435 cm-1吸收峰,并伴有以3 185 cm-1为中心的吸收宽带,经360 ℃热处理后相关吸收消失,其颜色由亮黄色变为红色;高岭石热处理前红外光谱在3 620,3 648,3 670和3 698 cm-1附近显示一组与羟基相关的吸收峰,经610 ℃热处理后相关吸收峰消失;勃姆石热处理前红外光谱显示与羟基相关的3 086和3 311 cm-1吸收峰,经610 ℃热处理后相关吸收峰消失。硬水铝石包裹体通常呈针状,热处理前红外光谱显示与羟基相关的1 980和2 110 cm-1吸收峰,经610 ℃热处理后相关吸收峰消失,但仍保持针状晶形假像;磷灰石包体通常呈透明柱状或粒状晶形,由于OH与F相互作用,红外光谱在3 550 cm-1附近显示与羟基相关的吸收峰,610 ℃热处理后相关吸收峰仍然存在,磷灰石包体的形貌未见改变;白云母呈近透明无色片状晶形分布于刚玉中,红外光谱在3 624 cm-1附近显示与云母中羟基相关的吸收峰,650 ℃热处理后这一吸收峰仍然存在,云母的形状未见变化,透明度略微降低。通过实验,证明含水矿物包裹体对于鉴定低温热处理刚玉具有重要作用。  相似文献   

2.
对中国山东昌乐Be扩散处理、热处理和未处理双色蓝宝石(黄色和蓝色)进行了宝石学常规测试、紫外可见光谱、红外光谱、电子探针和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)测试,以获得它们的谱学特征,提出其鉴别方法。研究发现Be扩散处理双色蓝宝石仅出现Fe3+—Fe3+形成的紫外可见吸收峰,而且377nm吸收峰的强度异常高。红外光谱中,热处理和未处理的双色蓝宝石存在明显的3 310cm-1羟基吸收峰,而该吸收峰在Be扩散处理双色蓝宝石中消失。因此,紫外可见光谱和红外光谱可用于鉴别Be扩散处理、热处理和未处理双色蓝宝石。另外,二碘甲烷浸油实验也可识别Be扩散处理双色蓝宝石。  相似文献   

3.
应用红外光谱法鉴别肉苁蓉及其混淆品草苁蓉和锁阳   总被引:3,自引:0,他引:3  
采用傅里叶变换红外光谱法结合二维相关分析技术分别对药用植物肉苁蓉及其混淆品草苁蓉、锁阳进行了鉴别研究.结果表明,三者的红外光谱图表现出了一定的差异性:肉苁蓉在1 730和931 cm-1有吸收峰,草苁蓉在1 510,1 375,1 266 cm-1处存在吸收峰,锁阳的最高峰位于1 614cm-1处.在二阶导数谱图上三者差异更加明显:肉苁蓉在1 453,1 336,931,892 cm-1处都有较强的吸收峰.其中931 cm-1处的吸收峰较尖锐,强度也最强;草从蓉的最强峰位于1 509 cm-1,并且1 633和1 161 cm-1处的吸收峰明显变宽,强度也变大;锁阳在1 682cm-1处有较尖锐的吸收峰,1 605 cm-1附近的吸收峰强度也较大.二维红外谱图不但差别明显,而且直观.三者提取物的红外光谱同样存在显著差异.应用该方法能够实现肉苁蓉药材与混淆品的快速、准确鉴别.  相似文献   

4.
目前CVD法合成单晶钻石是超硬材料科学和宝石学关注的热点之一,该方法合成的单晶钻石常带有褐色调。通常采用高温高压法(HPHT)提高褐色CVD钻石的色级和透明度,在前期HPHT处理褐色CVD钻石实验基础上,选出颜色改善明显的三颗样品,对其处理前后谱学特征进行对比。采用紫外-可见吸收光谱、红外光谱、光致发光光谱、三维荧光光谱、激光拉曼光谱以及X射线摇摆曲线进行分析。结果表明,褐色和深褐色样品褪色温度较高,处理后样品紫外-可见吸收光谱吸收系数明显减小,透明度明显提高。样品中红外与近红外光谱显示,在1 332 cm-1处的吸收峰与N+中心有关,该中心是褐色CVD钻石常见特征。在3 124 cm-1处吸收峰与NVH0缺陷中心有关,该峰在CVD钻石和HPHT处理钻石中常见。另外在2 700~3 200 cm-1范围变化的一组吸收峰,与C-H键伸缩振动有关。高温对CVD钻石含H基团影响较大,在5~6 GPa压力下处理温度在1 500~1 700 ℃范围,会在近红外波段4 673,6 352,7 354,7 540,7 804和8 535 cm-1出现一组吸收峰,可指示样品经过较高温度处理。目前针对CVD钻石以及经过HPHT处理的CVD钻石近红外波段的论述较少,该研究可以为鉴定CVD钻石及HPHT处理CVD钻石提供依据。综合光致发光光谱和三维荧光光谱分析,处理后样品NV-缺陷比例减小,SiV-中心缺陷比例增加。在5~6 GPa压力下,仅当处理温度高于1 500 ℃时,样品三维荧光光谱在λex/λem=500 nm/575 nm处荧光峰增强,在λex/λem=490 nm/550 nm处荧光峰消失,从某种意义上该峰位变化可指示样品经过较高温度处理。物相分析结果显示,HPHT处理后CVD钻石在1 332 cm-1处拉曼位移半高宽和XRD摇摆曲线半高宽均减小,表现出了较好的一致性,说明经HPHT处理的褐色CVD钻石结晶质量变优。  相似文献   

5.
坦桑尼亚Umba出产颜色丰富的刚玉,该研究对象是一颗来自Umba的具有特殊变色效应的蓝宝石,D65光源(色温6 500 K)下呈现淡黄色,A光源(色温2 856 K)下呈现淡紫红色。为了研究这颗变色蓝宝石紫外-可见光光谱中的谱峰归属与变色成因,该研究使用电荷补偿理论来分析此样品紫外-可见光光谱中的谱峰归属。采用紫外-可见分光光度计(UV-Vis)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对这颗变色蓝宝石进行了测试。结果发现,变色蓝宝石紫外-可见光光谱中存在位于377,388和450 nm处的3个吸收峰和1个以560 nm为中心的宽缓吸收带。样品的颜色主要受450 nm处吸收峰和以560 nm为中心的吸收带影响,其中以560 nm为中心的吸收带造成了这颗蓝宝石的变色效应。根据激光剥蚀电感耦合等离子体质谱仪的测试结果,样品中主要杂质元素有Fe,Ti,Cr,V和Mg等。样品紫外-可见光光谱中377,388和450 nm处的吸收峰是由Fe3+导致。蓝宝石中的Cr3+,V3+,Fe2+-Ti4+对都可以在560 nm附近产生吸收,结合电荷补偿理论分析,刚玉中的Mg2+会优先和Ti4+进行电荷补偿,样品中Mg含量要稍微高于Ti,推测样品中几乎所有Ti4+会与Mg2+进行电荷补偿,因此样品中几乎不会存在Fe2+-Ti4+对。Fe2+-Ti4+对电荷转移产生的吸收特征具有很强的偏振性,尤其是在580 nm以后的吸收特征会随着偏振方向的改变而有很明显的变化。偏振紫外-可见光光谱测试发现以560 nm为中心的吸收带没有明显的偏振性,进一步验证了样品中几乎没有Fe2+-Ti4+对,因此以560 nm为中心的吸收带主要是由于Cr3+和V3+造成的。样品的颜色主要是由Fe3+,Cr3+和V3+引起的,而变色效应主要是由Cr3+和V3+导致。结合电荷补偿机制与偏振-紫外可见光光谱来解释这颗变色蓝宝石的紫外-可见光光谱中以560 nm为中心的吸收带的归属,为研究刚玉紫外-可见光光谱中较为常见的位于560 nm左右吸收带的归属提供了一种新的研究思路。  相似文献   

6.
本文对吸附Cu2 前后梧桐树叶的红外光谱进行了分析比较.梧桐树叶的红外吸收光谱图主要由碳水化合物如木质素、纤维素等吸收带组成.1735cm-1和1615cm-1处的吸收峰是由C=O的伸缩振动引起的;1515cm-1的吸收峰是苯环的骨架振动峰,1243cm-1处是苯羟基中C-O的伸缩振动峰.1447cm-1处的吸收峰为CH3和CH2的不对称弯曲振动峰,1370cm-1处是甲基的弯曲振动峰.吸附Cu2 后,羧基的羰基峰(1735cm-1附近)向低波数移动1-2cm-1,酮羰基峰(1616cm-1附近)向高波数移动2-8cm-1;天然树叶1242cm-1处的吸收峰红移至1238cm-1处.红外光谱比较分析的结果表明吸附Cu2 后树叶的结构仍保持完整.  相似文献   

7.
以市场上铅玻璃充填红宝石为研究对象,对其充填量的特征进行了相关研究。测试了其常规宝石学参数,包括:折射率、偏光性、紫外荧光、可见光谱等。同时利用微照相、X射线荧光光谱仪、红外光谱仪对其充填量特征进行深入研究。样品的宝石学常规参数通过多次测试求其平均值得到最终结果。经分析,充填处理过的样品与天然红宝石的宝石学参数相吻合,少数几颗在偏光测试中呈现出全亮,这可能与充填物集中于台面分布有关。X射线荧光光谱显示样品中铅的峰高而且峰形尖锐,说明充填量多而明显。同时利用显微放大观察了所有样品的充填量的内外部特征并进行了对比研究,发现其充填内外部特征表现为充填裂隙、凹坑、气泡、雾状结构的充填物、蓝色闪光效应和充填空洞,且充填量越多,这些充填特征越明显。通过对比台面以及底面充填裂隙的大小、形态和数量;内部充填气泡多少和大小形态;暗域漫反射照明下黄色充填物的明显程度和分布面积;蓝色闪光效益的明显程度可以来区分不同样品不同充填量的差别。红外光谱测试结果显示3 424,2 920,2 851以及2 600 cm-1处的吸收峰,2 920cm-1为硬水铝矿的吸收峰,2 851 cm-1为红宝石其他内含物的吸收峰。3 424和2 600 cm-1为典型铅玻璃充填物的指示峰,其中3 424 cm-1为充填物水分子的振动吸收峰,2 600 cm-1为Si-OH的吸收峰。研究发现若以2 600 cm-1充填物特征指示峰为例,样品的充填量不同,该峰的峰形强度以及峰高也不一样。以2 600 cm-1充填物特征吸收峰为标准,得出不同样品的此峰高值的柱状图,因峰高值与充填量成正比关系,所以此峰高图可以指示得出充填量的变化量。通过图对比看出样品R-6较R-3峰高值较低,R-3峰高值较R-5低,R-5峰高值最高,说明R-6充填量较R-3充填量较少,而R-5充填量最多,这与前面显微放大观察大部分结论相符合。通过以上研究与分析,可以得出铅玻璃充填物基本不影响红宝石本身的宝石学参数特性,且其分布内外部充填特征基本上可以区别充填量的多少,但对于充填都过于严重的红宝石却具有局限性。红外光谱在一定程度上弥补了这个缺陷,通过对充填物指示峰的峰高计算可以区分充填量之间的微小差别。这也在一定程度上为铅玻璃充填红宝石的定量分级打下来基础。  相似文献   

8.
基于中红外光谱检测牛奶中掺杂的尿素   总被引:2,自引:0,他引:2  
采用中红外光谱技术对牛奶中掺杂尿素目标物进行检测.配置含有尿素浓度范围为1~18 g·L-1之间18个牛奶样品,分别研究了纯牛奶和掺杂尿素牛奶的红外光谱特性,并进行了对比分析.利用尿素1 562 cm-1处酰胺Ⅲ带C=O伸缩振动吸收峰面积A1 562与1 464 cm-1处C-N伸缩振动吸收峰面积A1464的比值A1 ...  相似文献   

9.
强化生物除磷是废水生物除磷的主要技术手段。在厌氧与好氧交替运行的反应过程中,污泥中聚β羟基烷酸酯(PHA)经历了厌氧储存和好氧降解的过程,其位于1 740 cm-1吸收峰亦呈现出先增强后减弱的变化。通过比较PHA标准品的红外光谱图,实现了活性污泥PHA的红外特征归属,1 740 cm-1红外吸收峰源于PHA羰基特征吸收。利用高斯分峰法将相互重叠的PHA峰、蛋白质Ⅰ峰和蛋白质Ⅱ峰进行了分离,PHA与蛋白质Ⅰ峰的峰面积比值与PHA测定值有较好相关性,相关系数可达0.873,峰面积比值可反映污泥中PHA的变化趋势。选取1 480~1 780 cm-1区域红外光谱,经过归一化处理并转化为吸光度数据后,结合污泥样品PHA含量的色谱分析结果,应用偏最小二乘法建立了污泥样品红外光谱与PHA含量的关系模型,模型预测值与测量值具有较好的一致性,结合未知浓度活性污泥样品的红外光谱以及该关系模型,可以迅速预测未知污泥样品中的PHA含量。该方法的研究为污泥胞内PHA的快速表征和定量分析提供了新的分析方法。  相似文献   

10.
蒙药草乌炮制前后二维红外相关光谱的分析研究   总被引:4,自引:0,他引:4  
采用二维相关红外技术,并借助于变温过程所跟踪的动态光谱对蒙药生草乌进行了分析研究.蒙药生草乌和制草乌的一维谱图较相似,导数光谱进一步分析,1 745,1 468,1 337 cm-1处吸收峰在经过酸奶炮制之后向底波数位移,1 657 cm-1处吸收峰在经过炮制之后向高波数位移,而二维红外相关谱则差别较大,在1 300~800 cm-1波数范围内,生品的二维红外光谱存在3个主要的自动峰(1 650,1 560,1 470cm-1),其中以1 560 cm-1峰最强.自动峰和交叉峰形成明显的3×3的对称分布,均为正相关;制草乌在这一范围内的自动峰主要在4个区域,1 220与1 200 cm-1两个吸收峰组成的一个区域,1 140和1 070 cm-1两个尖锐的峰区,以及1 000~900 cm-1区域内宽大重叠的峰,各自动峰均为正相关.凭借二维红外相关谱上的自动峰和交叉峰町以较直观地鉴别牛草乌和制草乌,而且还可以揭示两者相应各官能团的变化规律.该法快速、准确,可为鉴别药材加上后结构的变化规律提供一种新的方法和手段.  相似文献   

11.
Diffusion of beryllium was performed on dark blue sapphire from China and Australia. The samples were heated with beryllium as a dopant in a furnace at 1 600 ℃ for 42 h in air. After beryllium diffusion, samples were analyzed by UV-Vis, FTIR, and WD-XRF spectroscopy. After heat-treatment with Be as a catalyst, the irons of the ferrous state were changed to the ferric state. Therefore, reaction of Fe2+/Ti4+ IVCT was decreased. The absorption peaks at 3 309 cm-1 attributed to OH radical were disappeared completely due to carry out heat treatment. Consequently, the intensity of absorption band was decreased in the visible region. Especially, decreased absorption band in the vicinity of 570 nm was responsible for the lighter blue color. Therefore, we confirmed that the dark blue sapphires from China and Australia were changed to vivid blue.  相似文献   

12.
紫黄晶是珍贵的水晶变种,其紫-黄色区域分别具有特征的中红外吸收光谱,在不同温度具有不同变化规律,这些规律无法在单次、单点实验中加以总结。实验通过热处理和显微红外光谱技术,对不同温度淬火紫黄晶的紫-黄色区进行线扫描,分析一系列温度、空间变化下的中红外光谱,实验表明水对于紫黄晶的颜色影响不大,在加热过程中谱线会发生规律性变化。紫色区3 585和3 614 cm-1尖锐峰、3 400 cm-1附近宽泛峰同时变化表明宝石在受热过程以结构水变化为主,而受热后紫色区的特征峰减弱及黄区特征峰增强的现象可能与结构水中H+或其他阳离子的移动有关。同时发现对于热处理产生的黄晶,中红外光谱仍保持紫晶特征吸收光谱。  相似文献   

13.
蓝宝石作为五大名贵宝石之一,经济价值极高,其中“皇家蓝”、“矢车菊蓝”最为昂贵。而水热法可合成出颜色与“皇家蓝”色极为相似的蓝宝石,且合成出的晶体较大,可通过切磨加工获得内部纯净的样品,仅凭外观及常规方法难以鉴别。选取了7颗水热法合成蓝色蓝宝石为实验对象,采用LA-ICP-MS、拉曼光谱仪、红外光谱仪、紫外-可见分光光度计和三维荧光光谱仪,对其化学成分、谱学特征进行研究,并与外观极为相似的天然蓝宝石、焰熔法合成蓝宝石进行对比分析。分析表明,水热法合成蓝宝石总体成分较为单一,而天然蓝宝石则含有丰富的微量元素。三种样品拉曼光谱均呈现典型的刚玉振动模式,显示A1g和Eg振动模的拉曼峰。在红外光谱的指纹区,三种样品的吸收峰均无明显差别,与拉曼光谱的结果耦合。但在官能团区3 000~4 000 cm-1波数范围,水热法合成蓝宝石存在由含水矿物包裹体产生的羟基振动峰,而天然蓝宝石和焰熔法合成蓝宝石未显示此特征。紫外-可见光谱表明三种样品均为Fe2+-Ti4+对致色,但水热法与焰熔法合成蓝宝...  相似文献   

14.
血珀是琥珀中红色透明的品种,因其色红如血而深受消费者喜爱。天然血珀产量少,价格一直较外观相似的其他颜色琥珀高。由此,一些本来颜色非红或者红色浓度不足者,被人为技术变红或者更红。现今消费市场中有许多通过一种烤色技术而成的“血珀”用来冒充天然血珀,被用来迷惑消费者以达到追求高额利润的目的。因此,对天然血珀和烤色血珀的谱学特征分析并将其作为鉴定依据有重要的理论意义和实际意义。通过对天然血珀(4件)和烤色血琥珀(9件)采用常规宝石学测试方法、傅里叶变换红外光谱仪、紫外-可见分光光度计等分析,给出了二者谱学特征,并总结和探讨了天然与烤色血珀的鉴别特征。宝石学测试、红外光谱测试及紫外可见光谱分析均在河北地质大学珠宝学院完成。红外光谱测试采用NICOLET is5型傅里叶变换红外光谱仪,紫外-可见光光谱测试运用型号为GEM-3000的紫外-可见分光光度计。结果表明:烤色及天然血珀在相对密度、紫外荧光、表面及内含物特征等方面有明显不同。烤色血珀平均相对密度略小,天然血珀的平均相对密度在1.075左右;而烤色血珀平均相对密度在1.045附近。烤色琥珀长波、短波紫外光下均无荧光,天然血珀在长波紫外灯下有较弱的蓝色荧光。烤色血珀内部流体包裹体不完整,几乎全部爆破成树枝状、圆盘状。烤色血珀表面广泛发育龟裂纹且裂隙中颜色更深,并伴有红色的斑点、流纹,颜色呆板附在表面;天然血珀气泡很少全部爆破,红色分布均匀且过渡自然,表面有风化纹。经烤色后琥珀基本分子骨架虽未遭到严重破坏,但烤色血珀与天然血珀在2 930,1 724,994和1 157 cm-1等处红外光谱吸收峰的强度与位置存在一定的差异,如:烤色血珀在2 930 cm-1处指示C-H饱和不对称伸缩振动的吸收峰的峰强度与天然血珀相比明显较弱;烤色琥珀在1 724 cm-1指示C=O波段的峰的峰强度较天然琥珀明显增强,而且吸收峰的峰位较天然血珀吸收峰位偏大;1 029与975 cm-1处的峰指示酯中C-O伸缩振动,烤色琥珀的两峰在此趋于合并呈现单峰且吸收峰宽而强,而天然血珀在此两处的吸收峰窄而弱;并且,相比于天然血珀,烤色血珀的975 cm-1峰明显向大波数处移动至997 cm-1附近。天然血珀有1 158和1 227 cm-1次强峰及1 180 cm-1附近的弱吸收峰;烤色琥珀此处的吸收峰趋于单峰化,吸收峰位置在1 160 cm-1附近,吸收峰的强度较天然血珀明显增加。天然血珀在1 457 cm-1处和1 376 cm-1处两处吸收峰的强度远远大于烤色血珀,且天然血珀峰的最高点从1 457到1 376 cm-1呈下倾趋势,烤色血珀呈水平与水平向上趋势。烤色血珀在975~1 029 cm-1处的峰合并成宽的单峰。在紫外可见光谱中,天然血珀在660 nm处转折幅度明显大于烤色血珀。以上特征可以考虑作为鉴别天然与烤色血珀的关键证据。烤色与天然琥珀的谱学特征差异,推测主要是因为含C-H,C=C键的耗减,C-O,C=O键等含氧结构的增加所致。  相似文献   

15.
颜色不稳定黄色蓝宝石广泛存在市场中,如何有效鉴别颜色不稳定黄色蓝宝石的特征是当前宝石学研究的热点。利用改色实验、紫外-可见光谱(UV-Vis)、三维荧光光谱对颜色不稳定黄色蓝宝石进行深入的谱学特征研究。改色实验表明斯里兰卡黄色蓝宝石中部分存在光致变色的现象,短波紫外光会导致样品着色,而太阳光会导致样品褪色。紫外光照后黄色蓝宝石的颜色由稳定部分和不稳定部分共同组成。颜色不稳定蓝宝石的“着色态”和“褪色态”紫外-可见光谱可见明显的蓝紫区吸收,这可能与蓝宝石中O2--Fe3+的电荷转移有关,导致了蓝宝石稳定的黄色调。蓝宝石的紫外-可见光谱在“着色态”相比“褪色态”可见明显的蓝紫区吸收增强,可能由于紫外光照射增强了O2--Fe3+之间的电荷转移。紫外-可见光谱测试表明样品中具有弱的与Fe有关的吸收峰,这与样品含有较低的Fe含量一致,不足以产生稳定黄色调。三维荧光光谱分析结果表明颜色不稳定黄色蓝宝石的“着色态”和“褪色态”具有一致的激发光波长Ex=325~335 nm、发射光波长Em=560~570 nm的特征荧光中心,在“着色态”时的荧光强度明显高于“褪色态”。含铁黄色蓝宝石具有荧光效应且特征的荧光中心可作为识别这种颜色不稳定黄色蓝宝石的潜在鉴定手段。综合报道了颜色不稳定黄色蓝宝石的谱学特征与可能的颜色成因,为识别颜色不稳定的蓝宝石提供了鉴定依据,同时为后续改色处理的工艺提供了理论基础。  相似文献   

16.
采用常规宝石学测试方法,结合能量色散型X射线荧光光谱仪、傅里叶变换红外光谱仪、激光拉曼光谱仪、荧光光谱仪等测试分析方法,对比天然及充填处理天河石的谱学特征,旨在探寻有效无损鉴别充填处理天河石的方法。结果表明,充填处理天河石同天然天河石折射率范围一致,均为1.52~1.53。充填处理天河石的光泽较弱,为弱玻璃—蜡状光泽,有别于天然天河石的玻璃光泽。放大观察,部分充填处理天河石样品可见裂隙处出现明显内凹现象,内凹处光泽明显较弱,裂隙中还可存在气泡。较弱的光泽以及放大观察可以辅助区分天然天河石与充填处理天河石。天然及充填处理天河石中所含的主量元素种类一致,均含有Al,Si,K和Rb,并未检测到属于充填物质的异常化学元素。红外反射光谱在指纹区都表现为天河石本身基团振动所产生的吸收;在官能团区,天然天河石没有明显吸收,而充填处理天河石存在由(—CH2—)振动所产生的2 844和2 912 cm-1两处特征吸收峰。天然及充填处理天河石的激光拉曼光谱在100~1 500 cm-1波段内特征相同,均表现为天河石本身基团振动所产生的拉曼峰。充填处理天河石在100~3 700 cm-1波段内荧光干扰明显强于天然天河石,当检测到表面裂隙中的有机充填物时荧光干扰会更强并出现区别于天然天河石的拉曼峰。天然天河石与充填处理天河石的三维荧光光谱不管是荧光中心位置还是相对强度都没有典型区别,且天然天河石自身具有不同的荧光特征,三维荧光光谱不能有效区分天然天河石与充填处理天河石。  相似文献   

17.
国际珠宝交易市场上最近出现了一批价值不菲的无色透明的宝石级钠沸石刻面成品,为提供快速区分其与仿制品材料的依据,文章通过红外光谱和拉曼光谱对三颗钠沸石样品的振动光谱进行了研究。结果表明, 其红外光谱主要表现为:4 000~1 200 cm-1的吸收峰是结构中水导致的吸收;1 200~600 cm-1 的强吸收与TO4四面体的内部T—O(T为Si或Al)的反对称和对称伸缩振动有关。拉曼光谱散射峰主要分布在300~600和700~1 200 cm-1两个区间。300~360 cm-1处较弱强度的拉曼散射峰是由于结构中水分子所导致。482 cm-1处中等强度的峰归属于硅氧四面体内部由于变形导致的拉曼位移。726 cm-1处的拉曼散射峰归属于Al—O的伸缩振动;974,1 038,1 084 cm-1的三处拉曼散射峰都是Si—O的伸缩振动导致的拉曼位移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号