首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Threshold photoelectron-photoion coincidence spectroscopy has been used to investigate the dissociation kinetics of the manganocene ion, Cp(2)Mn(+) (Cp = eta(5)-cyclopentadienyl). The Cp loss reaction was found to be extremely slow over a large ion internal energy range. By simulating the measured asymmetric time-of-flight peak shapes and breakdown diagram, the 0 K thermochemical dissociation limit for CpMn(+) production was determined to be 9.55 +/- 0.15 eV. A CpMn(+)-Cp bond energy of 3.43 eV was obtained by combining this CpMn(+) + Cp dissociation limit with the Cp(2)Mn adiabatic ionization energy of 6.12 +/- 0.07 eV. Combining the measured onset with known heats of formation of Cp and Mn(+), the Cp-Mn(+) bond energy was determined to be 3.38 +/- 0.15 eV. These results lead to 298 K heats of formation of Cp(2)Mn(+) and CpMn(+) of 863 +/- 7 and 935 +/- 16 kJ/mol, respectively. Finally, by combining these results with a previous measurement of the CpMn(CO)(3) --> CpMn(+) + 3CO + e(-) dissociation limit, we arrive at a new value for Delta(f)H degrees (298K)(CpMn(CO)(3)) of -424 +/- 17 kJ/mol.  相似文献   

2.
The decay of internal energy selected 1-chloropropyne cations is investigated using the fixed wavelength (He-Iα) photoelectron-photoion coincidence technique. The breakdown curves of the molecular ion and the C3H2Cl+, C3HCl+, CCl+, C3H+3, C3H+3, C3H+ fragment ions are reported. For 1-chloropropyne cations initially formed in their A?2E state it is found that four fragmentation channels compete with a non-dissociative relaxation pathway. The average kinetic energies released on formation of C3H+3 and C3H+3 are deduced from the time-of-flight distributions of these fragment ions measured at different internal energies of the molecular ion. The coincidence data are supplemented by electron impact appearance energies. The obtained decay pattern of 1-chloropropyne cation is compared with the breakdown diagrams reported for the C3H+4 isomers, i.e. allene-, propyne- and cyclopropene cations.  相似文献   

3.
Threshold photoelectron-photoion coincidence (TPEPICO) spectroscopy has been used to investigate the unimolecular chemistry of gas-phase methyl 2-methyl butanoate ions [CH3CH2CH(CH3)COOCH3·+]. This ester ion isomerizes to a lower energy distonic ion [CH2CH2CH(CH3)COHOCH3·+] prior to dissociating by the loss of C2H4. The asymmetric time of flight distributions, which arise from the slow rate of dissociation at low ion energies, provide information about the ion dissociation rates. By modeling these rates with assumed k(E) functions, the thermal energy distribution for room temperature sample, and the analyzer function for threshold electrons, it was possible to extract the dissociative photoionization threshold for methyl 2-methyl butanoate which at 0 K is 9.80 ± 0.01 eV as well as the dissociation barrier of the distonic ion of 0.86 ± 0.01 eV. By combining these with an estimated heat of formation of methyl 2-methyl butanoate, we derive a 0 K heat of formation of the distonic ion CH2CH2CH(CH3)COHOCH3·+ of 101.0 ± 2.0 kcal/mol. The product ion is the enol of methyl propionate, CH3CHCOHOCH3·+, which has a derived heat of formation at 0 K of 106.0 ± 2.0 kcal/mol.  相似文献   

4.
A time-of-flight (TOF) ion mass spectrum in coincidence with threshold photoelectrons was measured in the photon energy region between the first and second dissociation limits of Kr2(+) to examine the decay processes of the Kr2(+) II(1/2u) state. The measured TOF spectrum reveals that Kr+ fragment ions are produced through dissociation of the repulsive I(1/2g) state, which can be formed by the decay process of the II(1/2u) state accompanied with emission of photons. The potential-energy curve of the I(1/2g) state is deduced with detailed analysis of the observed TOF spectrum, in which the radiative lifetime of the II(1/2u) state was also derived to be 2.5 micros. Additionally, evidence of the dissociation process of Kr3(+) ions was obtained in the same photon energy region, where the dominant channel is Kr3(+) --> Kr2(+) + Kr.  相似文献   

5.
Since its invention, a decade ago, photoelectron-photoion coincidence spectroscopy has continuously provided extremely important information on ionic fragmentation processes. The outstanding reputation of the technique is essentially founded on the fact that internal energy selected cations can be studied. In striking contrast to the importance of the method and to the reliability of the data obtained, only about 150 coincidence studies have been published up to now. This is due to the rather intricate experimental technique involved and, probably even more, to the main drawback of this method, i.e. the enormous length of time involved in the measurements. The systems investigated so far are comprehensively compiled in the present article. The two experimental variants currently in use, termed fixed and variable wavelength technique, are compared. Evidence for the complementary character of the two experimental versions is presented. It is recalled that the primary source of information is in any case a time-of-flight distribution. The different ways of analysing these distributions are summarized and the accuracy of the derived results is discussed. The current state of the art is exemplified by reviewing the outcomes for a number of selected examples. The presented results on di-, tri- and tetra-atomic cations reveal clearly the more recently achieved experimental progress. Data on such smaller ionic species are particularly useful for studying predissociation mechanisms, a domain which becomes more and more accessible to modern ab initio calculations of fragmentation pathways. The reported results for O2+ and CO2+ reveal that branching ratios for the formation of electronically and vibrationally excited dissociation products can now be quantified for sufficiently small systems. The possibility of distinct behaviour of isoenergetic molecular ions depending on the method of preparation is outlined in the case of formaldehyde cation. The same cation is used to exemplify a puzzling isotope effect originating in a rate-determining radiationless transition that precedes a significantly faster dissociative step. A variety of data on larger systems grouped according to topic are critically reviewed. The determination and accuracy of rate-energy functions is discussed, at first for the case of a single decay channel; then the analogous analysis for a series of competing fragmentations is outlined. The importance of competitive radiative and non-radiative/dissociative depletion of an excited electronic state is pointed out.  相似文献   

6.
photoelectron-photoion coincidence spectroscopy and density functional theory calculations have been used to investigate the dissociation kinetics of the benzene chromium tricarbonyl ion, BzCr(CO)3+ (Bz = C6H6). The dissociation of the BzCr(CO)3+ ion proceeds by the sequential loss of three CO and benzene ligands. The first and third CO and the benzene loss reactions were associated with metastable precursor ions (lifetimes in the microsecond range). By simulating the resulting asymmetric time-of-flight peak shapes and breakdown diagram, the 0 K appearance energies of the four product ions were determined to be 8.33 +/- 0.05, 8.93 +/- 0.05, 9.97 +/- 0.06, and 11.71 +/- 0.06 eV, respectively. Combined with the ionization energy of BzCr(CO)3, 7.30 +/- 0.05 eV, the three successive Cr-CO bond energies in the BzCr(CO)3+ were found to alternate, with values of 1.03 +/- 0.05, 0.60 +/- 0.05, and 1.04 +/- 0.05 eV, respectively, and the Bz-Cr bond energy in BzCr+ is 1.74 +/- 0.05 eV, a trend confirmed by the density functional theory (DFT) calculations. Using the heats of formation of the fully dissociated products, C6H6, Cr+, and CO, the 298 K heats of formation the ionic BzCr(CO)n+ (n = 03) species were determined. By scaling the DFT calculated bond energies for the neutral molecules, the heats of formation of the neutral BzCr(CO)n (n = 03) were also obtained.  相似文献   

7.
Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH(3)(+) dissociated from CH(3)Cl(+)(A(2)A(1) and B(2)E) ions were recorded. CH(3)(+) was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH(2)Cl(+) fragment was very low. For dissociation of CH(3)Cl(+)(A(2)A(1)) ions, a series of homocentric rings was clearly observed in the CH(3)(+) image, which was assigned as the excitation of umbrella vibration of CH(3)(+) ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH(3)(+)(1(1)A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH(3)Cl(+)(B(2)E) ions, total kinetic energy released distribution for CH(3)(+) fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B(2)E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH(3)Cl(+), CH(3)(+) formation from CH(3)Cl(+)(A(2)A(1)) ions was a rapid direct fragmentation, while CH(3)Cl(+)(B(2)E) ions statistically dissociated to CH(3)(+) + Cl via internal conversion to the high vibrational states of X(2)E.  相似文献   

8.
9.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to study the dissociation kinetics and thermochemistry of Me(4)Si, Me(6)Si(2), and Me(3)SiX, (X = Br, I) molecules. Accurate 0 K dissociative photoionization onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distribution, both of them analyzed and simulated in terms of the statistical RRKM theory and DFT calculations. The average enthalpy of formation of trimethylsilyl ion, Delta fH(o)298K(Me(3)Si(+)) = 617.3 +/- 2.3 kJ/mol, has been determined from the measured onsets for methyl loss (10.243 +/- 0.010 eV) from Me(4)Si, and Br and I loss from Me(3)SiBr (10.624 +/- 0.010 eV) and Me(3)SiI (9.773 +/- 0.015 eV), respectively. The methyl loss onsets for the trimethyl halo silanes lead to Delta fH(o)298K(Me(2)SiBr(+)) = 590.3 +/- 4.4 kJ/mol and Delta fH(o)298K(Me(5)Si(2)(+)) = 487.6 +/- 6.2 kJ/mol. The dissociative photoionization of Me(3)SiSiMe(3) proceeds by a very slow Si-Si bond breaking step, whose rate constants were measured as a function of the ion internal energy. Extrapolation of this rate constant to the dissociation limit leads to the 0 K dissociation onset (9.670 +/- 0.030 eV). This onset, along with the previously determined trimethylsilyl ion energy, leads to an enthalpy of formation of the trimethylsilyl radical, Delta fH(o)298K(Me(3)Si(*)) = 14.0 +/- 6.6 kJ/mol. In combination with other experimental values, we propose a more accurate average value for Delta fH(o)298K(Me(3)Si(*)) of 14.8 +/- 2.0 kJ/mol. Finally, the bond dissociation enthalpies (DeltaH(298K)) Si-H, Si-C, Si-X (X=Cl, Br, I) and Si-Si are derived and discussed in this study.  相似文献   

10.
Dissociation of energy-selected c-C2H4S+ was investigated in a region of 10.6-11.8 eV with a threshold photoelectron-photoion coincidence technique and a synchrotron as a source of vacuum ultraviolet radiation. Branching ratios and average releases of kinetic energy in channels of formation of c-C2H4S+, CH3CS+, and HCS+ were obtained from well-resolved time-of-flight peaks in coincidence mass spectra. Measured average releases of kinetic energy for channel CH3CS+ + H of least energy are substantial and much greater than calculated with quasiequilibrium theory; in contrast, small releases of kinetic energy near the appearance onset for channel HCS+ + CH3 agree satisfactorily with statistical calculations. Calculations of molecular electronic structures and energetics of c-C2H4S+ and C2H3S+ isomers and various fragments and transition states were also performed with Gaussian 3 method to establish dissociation mechanisms. A predicted dissociation energy of 11.05 eV for c-C2H4S --> HCS+ + CH3 agrees with a linearly extrapolated threshold at 10.99+/-0.04 eV and a predicted dissociation mechanism that c-C2H4S+ isomerizes to CH3CHS+ before dissociating to HCS+ + CH3 supports the experimental results. The large releases of kinetic energy for channel CH3CS+ + H might result from a dissociation mechanism according to which c-C2H4S+ isomerizes to a local minimum CH3CSH+ and then dissociates through a transition state to form CH3CS+ + H.  相似文献   

11.
The dissociative photoionization of tetramethyltin (Me?Sn) and hexamethylditin (Me?Sn?) has been investigated by threshold photoelectron-photoion coincidence (TPEPICO). Ions are energy-selected, and their 0 K dissociation onsets are measured by monitoring the mass spectra as a function of ion internal energy. Me?Sn(+) dissociates rapidly by methyl loss, with a 0 K onset of E? = 9.382 ± 0.020 eV. The hexamethylditin ion dissociates slowly on the time scale of the experiment (i.e., during the 40 μs flight time to the detector) so that dissociation rate constants are measured as a function of the ion energy. RRKM and the simplified statistical adiabatic channel model (SSACM) are used to extrapolate the measured rate constants for methyl and Me?Sn(?) loss to their 0 K dissociation onsets, which were found to be 8.986 ± 0.050 and 9.153 ± 0.075 eV, respectively. Updated values for the heats of formation of the neutral Me?Sn and Me?Sn? are used to derive the following 298.15 K gas-phase standard heats of formation, in kJ·mol?1: Δ(f)H(m)(o)(Me?Sn(+),g) = 746.3 ± 2.9; Δ(f)H(m)(o)(Me?Sn?(+),g) = 705.1 ± 7.5; Δ(f)H(m)(o)(Me?Sn(?),g) = 116.6 ± 9.7; Δ(f)H(m)(o)(Me?Sn,g) = 123.0 ± 16.5; Δ(f)H(m)(o)(MeSn(+),g) = 877.8 ± 16.4. These energetic values also lead to the following 298.15 K bond dissociation enthalpies, in kJ·mol?1: BDE(Me?Sn-Me) = 284.1 ± 9.9; BDE(Me?Sn-SnMe?) = 252.6 ± 14.8.  相似文献   

12.
Energy selected trimethyl phosphine ions were prepared by threshold photoelectron photoion coincidence (TPEPICO) spectroscopy. This ion dissociates via H, CH(3), and CH(4) loss, the latter two involving hydrogen transfer steps. The ion time-of-flight distribution and the breakdown diagram are analyzed in terms of the statistical RRKM theory, which includes tunneling. Ab initio and DFT calculations provide the vibrational frequencies required for the RRKM modeling. CH(3) loss could produce both the P(CH(3))(2)(+) by a simple bond dissociation step, and the more stable HP(CH(2))CH(3)(+) ion by a hydrogen transfer step. Quantum chemical calculations are extensively used to uncover the reaction scheme, and they strongly suggest that the latter product is exclusively formed via an isomerization step in the energy range of the experiment. The data analysis, which includes modeling with the trimethyl phosphine thermal energy distribution, provides accurate onset energies for both H (E(0K) = 1024.1 +/- 3.5 kJ/mol) and CH(3) (E(0K) = 1024.8 +/- 3.5 kJ/mol) loss reactions. From this analysis, we conclude that the Delta(f)H(298K) degrees [HP(CH(2))(CH(3))(+)] = 783 +/- 8 kJ/mol and Delta(f)H(298K) degrees [P(CH(2))(CH(3))(2)(+)] = 711 +/- 8 kJ/mol.  相似文献   

13.
The dissociative photoionization studies have been performed for a set of dihalomethane CH(2)XY (X,Y = Cl, Br, and I) molecules employing the threshold photoelectron photoion coincidence (TPEPICO) technique. Accurate dissociation onsets for the first and second dissociation limits have been recorded in the 10-13 eV energy range, and ionization potentials have been measured for these compounds. By using our experimental dissociation onsets and the known heat of formation of CH(2)Cl(2) molecule, it has been possible to derive the 0 and 298 K heats of formation of all six neutral dihalomethanes as well as their ionic fragments, CH(2)Cl(+), CH(2)Br(+), and CH(2)I(+), to a precision better than 3 kJ/mol. These new measurements serve to fill the lack of reliable experimental thermochemical information on these molecules, correct the old literature values by up to 19 kJ/mol, and reduce their uncertainties. From our thermochemical results it has also been possible to derive a consistent set of bond dissociation energies for the dihalomethanes.  相似文献   

14.
Threshold photoelectron-photoion coincidence spectroscopy (TPEPICO) has been used to investigate the gas-phase ionic dissociation energies and thermochemistry of Me4Ge and Me3GeX, (Me = methyl; X = Cl, Br) molecules. The 0 K dissociation onsets for these species have been measured from the breakdown diagram and the ion time-of-flight distributions, which were modeled with the statistical RRKM theory and DFT calculations. The measured 0 K dissociative photoionization onsets were as follows: Me3Ge+ + Me (9.826 +/- 0.010 eV); Me3Ge+ + Cl (10.796 +/- 0.040 eV); Me3Ge+ + Br (10.250 +/- 0.011 eV); Me2GeCl+ + Me (10.402 +/- 0.010 eV); and Me2GeBr+ + Me (10.333 +/- 0.020 eV). These onsets were used to obtain new values for delta(f)H(degrees)298 (in kJ/mol) of the neutral molecules Me3GeCl (-239.8 +/- 5.7) and Me3GeBr (-196.5 +/- 4.3), and also for the following ionic species: Me3Ge+ (682.3 +/- 4.1), Me2GeCl+ (621.1 +/- 5.8), and Me2GeBr+ (657.8 +/- 4.7).  相似文献   

15.
The reduction mechanism of the title cluster has been investigated by means of cyclic voltammetry (CV), rotating disk electrode (RDE) voltammetry, and coulometry. The 2-electron reduction proceeds via two routes simultaneously. The first one involves two 1-electron reduction steps, followed by an iodide elimination to form the neutral Pd(3)(dppm)(3)(CO)(0) cluster (EEC mechanism). The second one is a 1-electron reduction process, followed by an iodide elimination, then by a second 1-electron step (ECE mechanism) to generate the same final product. Control over these two competitive mechanisms can be achieved by changing temperature, solvent polarity, iodide concentration, or sweep rate. The reoxidation of the Pd(3)(dppm)(3)(CO)(0) cluster in the presence of iodide proceeds via a pure ECE pathway. The overall results were interpreted with a six-member square scheme, and the cyclic and RDE voltammograms were simulated, in order to extract the reaction rate and equilibrium constants for iodide exchange for all three Pd(3)(dppm)(3)(CO)(I)(n)() (n = +1, 0, -1) adducts.  相似文献   

16.
The dissociative photoionization of 1,1-C(2)H(2)Cl(2), (E)-1,2-C(2)H(2)Cl(2), and (Z)-1,2-C(2)H(2)Cl(2) has been investigated at high energy and mass resolution using the imaging photoelectron photoion coincidence instrument at the Swiss Light Source. The asymmetric Cl-atom loss ion time-of-flight distributions were fitted to obtain the dissociation rates in the 10(3) s(-1) < k < 10(7) s(-1) range as a function of the ion internal energy. The results, supported by ab initio calculations, show that all three ions dissociate to the same C(2v) symmetry ClC═CH(2)(+) product ion. The 0 K onset energies thus establish the relative heats of formation of the neutral isomers, that is, the isomerization energies. The experimental rate constants, k(E), as well as ab initio calculations indicate an early isomerization transition state and no overall reverse barrier to dissociation. The major high energy channels are the parallel HCl loss and the sequential ClC═CH(2)(+) → HCCH(+) + Cl process, the latter in competition with a ClC═CH(2)(+) → ClCCH(+) + H reaction. A parallel C(2)H(2)Cl(2)(+) → C(2)HCl(2)(+) + H channel also weakly asserts itself. The 0 K onset energy for the sequential Cl loss reaction suggests no barrier to the production of the most stable acetylene ion product; thus the sequential Cl-atom loss is preceded by a ClC═CH(2)(+) → HC(Cl)CH(+) reorganization step with a barrier lower than that of the second Cl-atom loss. The breakdown diagram corresponding to this sequential dissociation reveals the internal energy distribution of the first C(2)H(2)Cl(+) daughter ion, which is determined by the kinetic energy release in the first, Cl loss reaction at high excess energies. At low kinetic energy release, this distribution corresponds to the predicted two translational degrees of freedom, whereas at higher energies, the excess energy partitioning is characteristic of only one translational degree of freedom. New Δ(f)H(o)(298K) of 3.7, 2.5, and 0.2 ± 1.75 kJ mol(-1) are proposed for 1,1-C(2)H(2)Cl(2), (E)-1,2-C(2)H(2)Cl(2), and (Z)-1,2-C(2)H(2)Cl(2), respectively, and the proton affinity of ClCCH is found to be 708.6 ± 2.5 kJ mol(-1).  相似文献   

17.
Delayed pulsed-field ionization of long-lived high Rydberg states yields vibrationally and partly rotationally resolved spectra of polyatomic molecular ions and of cluster ions when the resulting threshold ions are measured as a function of the excitation energy. The field ionized threshold ions are monitored and separated from the non-energy-selected ions in a reflecting field mass spectrometer with high mass resolution. The decay of the molecular or cluster ion core is monitored by the appearance of threshold ions at the daughter ion mass as a function of the selectively excited vibrational state. In this way, upper limits for dissociation thresholds of neutral and ionized dimers are obtained which are smaller than recent theoretical values from the literature. The appearance of daughter fragment ions after delayed pulsed-field ionization indicates that high Rydberg orbits are not destroyed by the dissociation of the core. Possible applications of our technique for the production of state-selected ions are discussed.  相似文献   

18.
Electron-ion-ion coincidence measurements carried out at discrete resonances near the N 1s threshold in ammonia are reported. The measured coincidence spectra show clear alignment of the molecule upon resonant core-electron excitation. The coincidence data are analyzed to extract information about the molecule in the excited state by simulating the alignment and the dissociation processes. Dynamic changes in molecular geometry are found as the photon energy is scanned through the N 1s-->4a(1) resonance, whereas for the N 1s-->2e state the geometry and kinetic energy released upon dissociation remain unchanged. The alignment of the core-excited molecules is found to be preserved even in two-step dissociation processes.  相似文献   

19.
The valence threshold photoelectron spectrum of NF3 is reported for the first time in the literature, and threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has measured, state-selectively, the decay dynamics of the valence states of NF3+ in the range 13–23 eV. Vacuum–UV radiation from the Daresbury synchrotron source dispersed by a 1 m Seya-Namioka monochromator photoionises the parent molecules. Electrons and ions are detected by threshold electron analysis and time-of-flight mass spectrometry, respectively. TPEPICO spectra are recorded continuously as a function of photon energy, allowing coincidence ion yields of the fragment ions and the breakdown diagram to be obtained. A comparison of the integrated threshold photoelectron and the total ion signals as a function of energy suggests that, in the range 16–19 eV, autoionisation via Rydberg states of NF3 makes a significant contribution to the production of threshold electrons. The 50% crossover energy for production of NF2+ from NF3+ is determined to be 14.10±0.05 eV. The first onsets for NF2+ and NF+ production are 13.95±0.05 and 17.6±0.1 eV, respectively. The majority of the Franck–Condon region of the ground state of NF3+ is stable with respect to dissociation to NF2+, whereas the unresolved states and most of the state dissociate exclusively to NF2+. The and states dissociate to NF+. Translational kinetic energy releases have been measured in NF2+ and NF+ at the energies of the Franck–Condon maxima of the valence states of NF3+. The results are compared with models assuming statistical and impulsive dissociation. The Ã/ states of NF3+ dissociate directly from the excited-state potential energy surface to NF2+, whereas the higher-lying state probably dissociates off the ground-state surface following rapid internal conversion. It is not possible to correlate unambiguously the formation of NF+ with either F2 or 2F, although on energetic grounds the latter products are more likely. Assuming that the neutral products are 2F, no information is obtained whether the two N–F bonds break simultaneously or sequentially.  相似文献   

20.
The bond dissociation energies of CuNO(+), Cu(NO)(2)(+), and CuAr(+) are determined by means of guided ion beam mass spectrometry and quantum chemical calculations. From the experiment, the values D(0)(Cu(+)-NO) = 1.13 +/- 0.05, D(0)(ONCu(+)-NO) = 1.12 +/- 0.06, D(0)(Cu(+)-Ar) = 0.50 +/- 0.07, and D(0)(Cu(+)-Xe) = 1.02 +/- 0.06 eV are obtained. The computational approaches corroborate these results and provide additional structural data. The relative values of D(0)(Cu(+)-NO) and D(0)(Cu(+)-Xe) are consistent with the approximately thermoneutral formation of CuXe(+) upon interacting CuNO(+) with xenon. The sequential bond dissociation energies of Cu(NO)(2)(+) exhibit a trend similar to those of other Cu(I) complexes described in the literature. Although metathesis of nitric oxide to N(2) and O(2) is of considerable interest, no evidence for N-N- or O-O-bond formations in Cu(NO)(n)(+) ions (with n up to 3) is obtained within the energy range studied experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号