首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据射流的质量守恒、 电荷守恒和动量守恒分析稳态射流的运动过程, 建立了控制方程组; 应用有限元分析软件COMSOL Multiphysics 5.0建立3种无针式喷头模型, 分析其外部电场的分布规律. 研究发现, 在由典型圆柱体喷头到增加辅助电极的阶梯轴喷头的几何形状变化过程中, 电场强度分布受两侧添加的辅助电极角度和增加回转体数量及回转体直径的影响, 通过设计, 电场被逐步优化. 对无针式静电纺丝装置的生产效率及纤维质量的提高具有重要意义.  相似文献   

2.
基于导体的尖端效应原理提出一种静电纺丝法,将探针阵列有序嵌入并垂直于聚合物溶液槽底部,保持针头与液面高度相近,当给溶液施加高电压时,会在针头附近区域形成峰值电场,由于流体在电场中具有不稳定性,射流能够在溶液表面的峰值电场处自发形成,进而拉伸细化、劈裂成丝,固化在收集板上.但有序排列的探针阵列之间也存在电场相互干扰问题.为了得到最佳的纺丝电场环境,需对工作电场进行模拟及优化.利用COMSOL Multiphysics 5.0建立几何模型,分析嵌入探针的长短、数量、针间距及几何排布方式对溶液表面场强峰值的影响.当溶液槽中嵌入一排探针时,凸弧形的几何排布方式能提高中间区域的场强峰值;对于两排探针,交错的排布方式有利于改善溶液表面电场的均匀性,而并列排布和对角线排布对均衡场强的效果不显著.  相似文献   

3.
通过电纺非溶剂调控的纤维素溶液,制备出纤维素电纺纤维.在N,N-二甲基乙酰胺(DMAc)-氯化锂(Li Cl)溶解纤维素体系中,以DMAc和N,N-二甲基甲酰胺(DMF)作为非溶剂,添加到高浓度的纤维素溶液中制备电纺溶液.考察添加非溶剂对纤维素溶液性质和电纺纤维形貌的影响.结果表明,添加非溶剂有助于提升纤维素溶液的可纺浓度,获得分散性较好的电纺纤维,其中DMF效果最好.添加非溶剂降低了纤维素溶液的黏度,使纤维素溶液可纺浓度提高;添加非溶剂改变了电纺溶液的稳定性,获得了分散良好的纳米纤维,从而有助于纤维素射流在电纺过程中快速固化成型.  相似文献   

4.
基于导体的尖端效应原理提出一种静电纺丝法, 将探针阵列有序嵌入并垂直于聚合物溶液槽底部, 保持针头与液面高度相近, 当给溶液施加高电压时, 会在针头附近区域形成峰值电场, 由于流体在电场中具有不稳定性, 射流能够在溶液表面的峰值电场处自发形成, 进而拉伸细化、 劈裂成丝, 固化在收集板上. 但有序排列的探针阵列之间也存在电场相互干扰问题. 为了得到最佳的纺丝电场环境, 需对工作电场进行模拟及优化. 利用COMSOL Multiphysics 5.0建立几何模型, 分析嵌入探针的长短、 数量、 针间距及几何排布方式对溶液表面场强峰值的影响. 当溶液槽中嵌入一排探针时, 凸弧形的几何排布方式能提高中间区域的场强峰值; 对于两排探针, 交错的排布方式有利于改善溶液表面电场的均匀性, 而并列排布和对角线排布对均衡场强的效果不显著.  相似文献   

5.
《电化学》2017,(4)
本文利用分子动力学模拟探讨了不同外电场下,液态水的分子间作用及分子排布的变化.在不同外电场下,O…O原子间的径向分布函数差别很小,但是单个水分子的偶极矩的取向变化却很大.当外电场为0时,单个水分子偶极取向的范围很宽(30~150度).与此同时,本文给出了局域诱导电场随着位置的变化关系图.当外加电场增强时,局域的诱导电场强度也随之增加.由于电场下偶极矩有序性的增加,局域诱导的静电相互作用能显著增加.计算结果表明,相对介电常数随着电场强度的增加而呈现指数衰减的变化形式.这一变化趋势可以用来理解不同电化学环境下,静电相互作用和局域诱导电场的变化.  相似文献   

6.
利用介观模拟的耗散粒子动力学法,对纺丝射流稳定直线段区域进行变电场模拟,并以三维的射流路径呈现出来.研究了不同控制频率下的变电场对聚合物分子链的运动情况、射流直径及下落行为的影响.结果表明,与稳定电场相比,周期性改变电场能够有效提高分子链的拉伸,使射流直径减小,较低的控制频率能够加速射流的下落,从而获得较细的纤维.  相似文献   

7.
采用分子动力学模拟方法研究了强度为4.0-40.0 V·nm-1的均匀电场对过冷水冰晶结构和冰晶生长速率的影响.文中通过CHILL算法来识别不同的冰相结构,通过拟合Avrami公式来得到冰晶生长所需的特征时间.结果表明,在所施加的电场强度范围内生成的冰相以立方冰为主.随着电场强度的增加,形成的立方冰的变形程度逐渐增大,冰晶的密度从0.98 g·cm-3增加到1.08 g·cm-3,同时冰晶生长的特征时间从5.153 ns减小到0.254 ns,冰晶生长的速率逐渐增长.对水分子的动力学分析表明,冰晶生长速率增加的部分原因是电场能够促进水分子运动到形成冰晶所需要的取向.此外,对冰相分子形成过程的分析表明缺陷冰分子在冰晶的生长过程中扮演着中间态的角色.随电场强度的增加,由缺陷冰转变为立方冰的比例增长的速率逐渐提高.  相似文献   

8.
提出一种实心针静电纺丝方法,采用实心针作为静电发射极,并将其置于由绝缘材料制成的导液棒轴心,导液棒处于储液盒底部的圆锥沉头通孔内部并可以做升降运动以控制供液量,需要时还可以起到通流的作用,有效地解决了多针头静电纺丝堵塞和无针头静电纺丝开放式供液的问题.利用COMSOL有限元分析软件对影响场强大小及分布的各参数进行场强模拟,研究增大场强并减小边缘效应的改进方法,并采用研发的不完全齿轮横动机构纺丝头做往复横动进行纺丝实验,验证了实心针静电纺丝装置有效降低了能耗和边缘效应,避免了针头堵塞及溶剂挥发问题.  相似文献   

9.
通过对聚(γ-苄基L-谷氨酸酯)(PBLG)的亲水改性制备了两亲性聚(γ-苄基L-谷氨酸酯-co-羟乙谷酰胺)无规共聚肽(PBHG)用于静电纺丝制备超细纤维.通过傅里叶变换红外光谱、核磁共振氢谱表征了聚合物结构.通过测定溶液表面张力、黏度、电导率及扫描电镜观察纤维形貌考察了不同溶剂及PBHG浓度对纺丝溶液性质及电纺纤维的影响.通过水浸实验及MTT法评价了电纺纤维膜的亲水性及细胞相容性.研究发现在三氯甲烷(TCM)和四氢呋喃(THF)中PBHG采取α-螺旋构象,刚性分子链自取向排列,可获得直径为微米或亚微米的电纺纤维.以TCM为溶剂时,因溶液表面张力大、导电率低导致纤维品质较差,而以THF为溶剂可获得表面光洁、尺寸均匀的电纺纤维.当溶剂为三氟乙酸(TFA)时,PBHG采取无规线团构象,柔性分子链彼此缠结,同时溶液表面张力小、黏度低、电导率高,可获得纳米电纺纤维.但因TFA挥发性相对较差,易造成纤维粘连.将TFA与TCM复配后作为溶剂可改善纤维粘连问题.与PBLG电纺纤维相比,改性后的PBHG电纺纤维的亲水性得到了改善,可在水中保持纤维骨架而无需交联,并表现出良好的细胞相容性,能促进细胞在电纺纤维膜上的增殖.  相似文献   

10.
乙烯和丙烯等低碳烯烃是重要的基础有机化工产品,广泛应用于化工生产的各个领域.相比于其他工艺,低碳烷烃氧化脱氢制烯烃工艺具有不受热力学平衡限制、无积炭等特点而被广泛研究.近年发现六方氮化硼(h-BN)、硼化硅(SiB_6)和磷酸硼(BPO_4)等非金属硼基催化剂能够高效催化烷烃氧化脱氢反应,并抑制产物烯烃的过度氧化,表现出高的催化活性和烯烃选择性.大量的研究表明,硼基催化剂活性起源于催化剂表面的"BO"物种(如B–O和B–OH等基团).氧化硼(B_2O_3)作为一种氧化气氛中化学性质稳定的含硼化合物,兼具丰富的"BO"位点,在反应条件下可形成多种结构以适用不同的化学环境,为制备高效的烷烃氧化脱氢催化剂提供了可能.在之前的研究中,多将B_2O_3浸渍在常规的TiO_2,SiO_2,Al_2O_3等三维多孔载体上用于氧化脱氢反应.考虑到B_2O_3结构的灵活性和易于成键特性,需开发更为有效的合成策略,以提升B_2O_3催化剂在氧化脱氢反应中的活性和稳定性.本文采用静电纺丝技术合成了直径为100~150 nm的多孔掺硼二氧化硅纳米纤维(PBSN)用于低碳烷烃氧化脱氢反应.静电纺丝法合成的催化剂中硼物种在开放的氧化硅纤维骨架上均匀分散且稳定固载.一维纳米纤维结构不仅有利于扩散,且赋予催化剂在高重时空速(WHSV)条件下优异的烷烃氧化脱氢反应活性.在乙烷氧化脱氢反应中,当乙烷的转化率达到44.3%时,乙烯的选择性和产率分别为84%和44.2μmol g_(cat)~(-1)s~(-1).而在丙烷脱氢反应中,当丙烷转化率为19.2%时,总烯烃选择性及丙烯产率分别为90%和76.6μmol g_(cat)~(-1)s~(-1).在温度为545℃,丙烷WHSV高达84.6 h~(-1)的条件下,催化剂保持长时间稳定.与其他负载型氧化硼催化剂相比,PBSN催化剂具有更高的烯烃选择性和稳定性.研究表明,在氧化硅负载B_2O_3催化剂催化丙烷氧化脱氢反应中,载体中Si–OH基团的存在可能会降低丙烯的选择性.瞬态分析和动力学实验表明,硼基催化剂催化烷烃氧化脱氢反应过程中O_2的活化受到烷烃的影响.本文不仅为高效硼基催化剂的合成提供了新思路,也为深入理解该类催化剂上烷烃氧化脱氢反应过程提供了实验支撑.  相似文献   

11.
在相同停留时间、不同搅拌桨线速度条件下,利用化学沉淀法制备球形氢氧化镍样品并运用SEM技术考察制得样品的形貌。研究表明:在相同的停留时间和化学条件下,随着搅拌桨线速度的提高样品的微观形貌由无定型状晶体变为大颗粒类球状晶体再变为较规则的球状晶体。利用PIV物理模拟技术模拟反应器内流场分布情况并结合XRD表征结果分析得出:在相同的停留时间和化学条件下,反应器内流场分布越均匀、速度矢量越大氢氧化镍晶体的生长越完整,结晶性、球形度和相对结晶度越高,并从流场分布的角度描述了球形氢氧化镍生长结晶的过程。  相似文献   

12.
碳纳米管因其独特的电子结构和性能引起了研究者们广泛的兴趣,尤其是它有序的纳米级管腔结构,可以为催化剂和催化反应提供一种独特的一维限域环境.碳纳米管的限域效应主要由于其管腔几何和电子结构可以使反应物发生富集、对金属纳米颗粒的尺寸限制以及对电子结构的调变作用.一系列研究表明,碳纳米管的限域效应可以对催化剂的活性进行调变,但是对产物选择性的影响方面研究得较少,特别是管径小于4 nm的碳纳米管的限域体系.因此,本文以肉桂醛选择性加氢反应为探针,研究限域效应对产物选择性的影响规律.采用管径为1-3 nm的碳纳米管,基于气相填充的方法将Ru纳米团簇分散于碳纳米管的管腔中,得到碳纳米管限域的Ru催化剂(Ru@CNT);采用浸渍法制备了碳纳米管管外壁负载的催化剂(Ru/CNT)来进行对比.肉桂醛含有共轭的C=C和C=O键,由于C=C键能低于C=O,前者更易发生加氢反应.结果表明,分散在碳纳米管外壁的Ru催化剂可以催化肉桂醛中的C=C加氢,得到氢化肉桂醛(HCAL);而Ru@CNT催化剂不仅可以催化C=C加氢得到氢化肉桂醛HCAL,还可以催化C=O键加氢得到肉桂醇,以及氢化肉桂醇.通过高分辨透射电镜、拉曼、程序升温还原、程序升温脱附对催化剂进行了表征.发现碳纳米管限域的纳米团簇金属颗粒的粒径大约为1-2 nm,与管外负载的金属颗粒相近,但是Ru@CNT催化剂上仍有部分金属纳米团簇分布在管外壁,这可能是Ru@CNT催化剂上有C=C键加氢产物的一个原因.碳纳米管独特的限域效应促进了Ru物种的还原,在H_2气氛下管内Ru物种的还原温度比管外低20oC.金属与碳纳米管的内、外壁之间的电子相互作用,纳米管腔的空间限制作用及管腔富集作用可能是产物分布产生差异的原因.  相似文献   

13.
半导体光催化有望解决日益严峻的环境污染与能源危机,因而得到广泛重视.纳米TiO2因为其强的氧化能力和良好的(光)化学稳定性与生物相容性,成为了最受欢迎的半导体光催化材料.到目前为止,材料科学家们制备了多种形貌的TiO2光催化材料,如纳米棒(线)、纳米片和空心微球等.作为染料太阳能电池的光阳极材料,小颗粒尺寸的纳米TiO2具有大的比表面积,有利于敏化剂的吸附,从而增强太阳能电池的光电转换性能.但是尺寸太小的TiO2颗粒不利于光散射,导致入射的太阳光直接穿透光阳极薄膜而不利于吸收和利用太阳光.为了解决敏化剂吸附和增强光散射这对矛盾,本文设计制备了由纳米片组装的TiO2纳米纤维:(1)首先通过静电纺丝法制备TiO2纳米纤维前躯体;(2)将TiO2纳米纤维前驱体在500°C焙烧,去除有机物,得到晶化度良好的由纳米颗粒组装的TiO2纳米纤维;(3)将TiO2纳米纤维进行NaOH碱热处理,使TiO2纳米颗粒转化成钛酸盐纳米片,然后经历酸洗和焙烧,得到由纳米片组装的TiO2纳米纤维.染料敏化太阳能电池的性能测试结果显示,碱热2.5 h所得TiO2样品的光阳极薄膜的光电转化效率提升了2.3倍;同时,利用丙酮光催化分解的活性来评价纳米纤维的光催化活性,发现碱热2.5 h所得纳米纤维上光催化降解丙酮的活性提升了3.1倍.结构表征结果显示,随着碱热时间的延长,从纤维表面生长出来的纳米片逐渐变长,催化剂的比表面积和孔容不断增加.大的比表面积有利于底物的吸附,纳米片结构有利于增强光散射,通过延长光程增强对光的利用效率,从而提升纳米纤维的光活性.光电流测试的结果显示,与碱热前的TiO2纳米纤维相比,碱热后的TiO2纳米纤维光电流显著增强,这是由于纳米片结构减小了扩散距离,有利于光生载流子快速转移到催化剂表面,引发丙酮的光催化氧化.  相似文献   

14.
利用低压近场静电纺丝技术制备了ZnO/PVDF(聚二偏氟乙烯)微米纤维平行阵列,通过光学显微镜、扫描电子显微镜(SEM)和X射线能量色散光谱(EDS)对ZnO/PVDF微米纤维进行了表征.该复合纤维的平均直径约为40μm.EDS分析测试证明ZnO纳米颗粒已经掺杂进入了平行微米纤维中.压电性能和电学性能测试结果表明,ZnO/PVDF微米纤维阵列的压电性能增强.研究结果表明,近场电纺丝ZnO/PVDF复合微米纤维阵列在压电型压力传感器和纳米发电机领域具有潜在的应用价值.  相似文献   

15.
甲烷(CH4)和二氧化碳(CO2)是导致全球变暖的两种主要温室气体.甲烷干重整技术能够同时消耗两种温室气体并制备氢气(H2)和一氧化碳(CO),是减少温室效应的理想策略之一.CH4和CO2在热力学上具有很高的稳定性,所以活化CH4和CO2需要克服较高的能垒,导致传统的甲烷干重整技术总是需要高热能来触发该反应发生.光催化技术的发展为在温和条件下启动甲烷干重整反应提供了更多的可能.然而,由于光激发载流子之间的快速重组,光催化效率仍然较低,难以满足工业需求.研究人员发现,通过构建内置电场增强电荷载流子的分离和转移动力学是解决上述问题的可靠策略.本文首先介绍了甲烷干重整的反应机理和用于甲烷干重整的工业热催化材料.随后,总结了光催化甲烷干重整的优点和潜在的光催化材料,重点介绍了两类催化剂:(1)由铁电效应产生的永久自发极化进而构筑的内建电场的光催化剂.由于自发极化引起的电场,基于铁电材料的光催化剂在促进电荷转移方面显示出较大潜力.(2)由异质结...  相似文献   

16.
采用静电纺丝技术, 结合正硅酸乙酯(TEOS)的溶胶-凝胶反应制备出了直径为500 nm的SiO2短纤维(n-SF). 纤维经过硅烷偶联剂KH570表面处理后, 与聚丙烯(PP)通过螺杆混合制得复合材料. 通过SEM观察, KH570处理过的SiO2短纤维(n-MSF)在PP基体中分散均匀, 界面结合良好. DSC和XRD测试结果表明, n-SF和n-MSF的加入均可提高PP的结晶速率, 同时改变PP中β晶含量, 进而影响冲击强度; 冲击实验结果表明, n-MSF添加量为3%(质量分数)时, 复合材料冲击性能比纯PP提高了40.3%.  相似文献   

17.
张寅晨  聂宁  张一飞 《催化学报》2022,(7):1749-1760
无细胞多酶催化是绿色生物制造领域的新兴技术之一.该技术通过设计和构建新的多酶合成路线,使得一些从天然途径难以获得的化学品的生产成为可能,具有广阔的应用前景.尽管无细胞多酶系统的构建具有高度的灵活性和可调性,但如何实现人工系统中多酶反应的兼容性和协同性仍是目前多酶体系构建的难点.针对这一难题,模块化构建和优化无细胞多酶体系的策略近年来受到广泛关注.尽管该策略已被应用于实践,但人们对于模块化的概念仍存在不同的理解.本文通过功能性来定义多酶模块,一个模块通常指共同作用并执行特定功能的一组酶,且同一模块内部的酶与酶之间应具有紧密的互作关系.另外,多酶体系的模块化还发生在从分子到反应器等多个不同的水平.介绍了自然界中的多酶模块,包括途径水平和分子水平的多酶模块,并简要介绍了这些天然模块的特点和功能.途径水平的多酶模块主要指生物体中一些承担特定生理生化功能的多酶反应(如糖酵解、糖异生、柠檬酸循环等).分子水平的多酶模块则主要包括多酶复合物和模块化酶,重点介绍了丙酮酸脱氢酶复合体、纤维小体、嘌呤体和非核糖体多肽合成酶等典型的例子.本文还梳理了近年来模块化构建人工无细胞多酶体系的重要进展,并根据模块在...  相似文献   

18.
本文制备了可释放一氧化氮(NO)的小口径人工血管.首先合成了氮烯醇化的N,N′-二丁基-1,6-己二胺(DBHD/N2O2)作为NO供体,并将其混入生物可降解材料聚己内酯中(PCL),利用静电纺丝技术构建管状血管支架.这种血管材料展现了良好的抗血小板粘附的性能,但是却存在着细胞毒性及NO的突释现象.为了解决这两方面问题,利用同轴电纺技术构建了以PCL或明胶为壳,混有DBHD/N2O2的PCL为芯的芯-壳结构纳米纤维多孔血管支架.这种芯-壳纤维结构能够缓慢释放NO,并且细胞相容性也得到了明显的改善.  相似文献   

19.
科技的飞速发展和世界人口膨胀带来一系列迫在眉睫的环境问题和能源危机.光催化和光电催化为缓解这些问题提供了绿色、经济有效的途径,已经被开发用于催化降解环境中的有机污染物、二氧化碳还原、水分解制备氢气,把生物质转化为清洁燃料,以及其它反应.通常,具有合适能带位置和带隙的半导体可以吸收太阳光,形成光生电子空穴对,然后转移到光催化剂表面,引发氧化还原反应.然而,有限的太阳光利用率和光诱导电子空穴对的高复合率阻碍了它们的工业化发展.在过去几十年里,研究人员已经制备了许多复合光催化剂,用以将光吸收范围从紫外区拓宽到可见光和近红外区域,如g-C3N4,BiVO4,Fe2O3,Ag3PO4,WO3,CdS,Sn3O4等.另一方面,还通过多种改性方法促进光生电子和空穴分离,包括表面改性、金属/非金属掺杂和异质结设计等.此外,偏压有助于电子的定向传输.因此,光电催化可以通过光照和偏置电压的...  相似文献   

20.
《电化学》2020,(1)
本文从历史角度综述了二氧化碳在铜基催化剂上的还原机理的最新研究进展,对区分C1和C2产物路径发生的机制,以及调控二氧化碳还原产物选择性的影响因素和方法进行了重点阐述,着重讨论了如何利用电化学红外光谱与微分电化学质谱等技术在揭示反应机理方面的研究思路与方法学.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号