首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
以氯化铝和异丙醇铝为原料, 水和乙醇为溶剂, 通过溶胶凝胶结合静电纺丝法制备了柔性γ-Al2O3纳米纤维膜.表征了纤维膜的形貌和机械性质, 并研究了纤维膜的形成过程.组成纤维膜的纤维直径均匀, 平均直径188 nm, 纤维由粒径在15~30 nm的纳米颗粒组成且表面光滑.制备的纤维膜具有较好的柔性及抗拉强度(1.01 MPa).  相似文献   

2.
以氯化铝和异丙醇铝为原料, 水和乙醇为溶剂, 通过溶胶凝胶结合静电纺丝法制备了柔性γ-Al2O3纳米纤维膜. 表征了纤维膜的形貌和机械性质, 并研究了纤维膜的形成过程. 组成纤维膜的纤维直径均匀, 平均直径188 nm, 纤维由粒径在15~30 nm的纳米颗粒组成且表面光滑. 制备的纤维膜具有较好的柔性及抗拉强度(1.01 MPa).  相似文献   

3.
以四氯化锡和三氯化锑为前驱体,通过静电纺丝技术制备了柔性透明的自支撑氧化锡锑(ATO)纳米纤维膜.研究结果表明,该柔性ATO纤维膜具有四方相金红石晶体结构,且呈无规的纤维网状分布.当前驱体煅烧温度分别为520℃和700℃时,纤维的平均直径为200和150 nm;组成纤维的颗粒的平均粒径为10和19 nm;可见光透过率为72%和80%;电阻率为5.23和2.20Ω·cm.该自支撑ATO纳米纤维膜还显示出优异的柔韧性,在弯曲500次后其电阻率基本不变.  相似文献   

4.
通过静电纺丝技术与离子溅射镀膜法,以电纺聚乙烯吡咯烷酮(PVP)为模板,制备了高透明的柔性金(Au)纳米纤维膜.研究表明,该柔性Au纳米纤维膜呈现无规网状分布,纤维的平均直径为291~322 nm.当Au的溅射时间为75 s时,所得薄膜的可见光透过率为92%,近红外反射率为7%,电阻率为2.9×10-3Ω·cm.该Au纳米纤维膜可转移到任何柔性基底上,且显示出优异的柔韧性,在弯曲500次后其电阻率基本不变.  相似文献   

5.
利用熔融纺丝相分离行为制备乙烯-乙烯醇共聚树脂(EVOH)纳米纤维,并利用湿法成网的方法制备EVOH纳米纤维膜,分析表征了EVOH纳米纤维的形态、结构、结晶性能及纤维膜的形态、孔隙率、孔径大小和分布、比表面积等。结果表明:乙烯-乙烯醇共聚树脂/乙酸丁酸纤维素酯(EVOH/CAB)经双螺杆熔融挤出去除CAB后所制备的EVOH纳米纤维平均直径为162~260nm,加工条件和方法对EVOH的结构和结晶性能没有明显影响。随着纤维膜厚度增加,EVOH纳米纤维膜的孔径减小、孔径分布变窄;随着纳米纤维制备过程中EVOH/CAB体系中EVOH含量增大,EVOH纳米纤维直径增大,其功能膜的孔隙率增大、比表面积减小。  相似文献   

6.
静电纺丝法制备SrTiO3多晶微纳米纤维   总被引:2,自引:0,他引:2  
应用静电纺丝法并结合Sol-gel 技术制备了SrTiO3微纳米纤维. SEM, TEM及电子衍射分析结果显示, 于900 ℃煅烧获得的纤维直径分布在50~400 nm之间, 其典型直径约为280 nm. XRD分析结果表明, 纤维由立方结构的SrTiO3晶粒组成, 平均晶粒尺寸为33 nm.  相似文献   

7.
在一种新的溶剂体系中通过静电纺丝制备TiO2纳米纤维   总被引:1,自引:0,他引:1  
梁建鹤  杨锦霞  黄应兴  刘海清 《化学学报》2010,68(17):1713-1718
以钛酸四丁酯为前驱体, 醋酸纤维素为模板纤维, 丙酮/N,N-二甲基乙酰胺为溶剂, 通过静电纺丝, 水解和450 ℃煅烧制备了直径约为80 nm的锐钛矿型TiO2纳米纤维. 通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和N2吸脱附法表征了TiO2纳米纤维的形貌、直径大小、晶态、比表面积、孔结构及分布. 研究表明该纳米纤维由大小为9.2 nm的颗粒组成, 纤维内含有大量直径为1.7~21 nm的介孔. 它具有与直径为25 nm的商业化Degussa P25相似的高比表面积, 约为50 m2/g. 研究了TiO2纳米纤维对有机小分子化合物罗丹明B (RhB)和苯酚的光催化降解. 结果表明: 以6 mg/L的RhB和10 mg/L的苯酚水溶液为母液, 以质量分数为0.05%的TiO2纳米纤维膜为催化剂, 在500 W的紫外灯照射下, 2 h内约90%的RhB和75%的苯酚能被光催化降解.  相似文献   

8.
将湿法工艺合成的β-磷酸钙纳米粒子与左旋聚乳酸(PLLA)的混合溶液通过电纺丝法制成杂化纳米纤维膜,以期制备一种新型纳米纤维骨组织修复材料。采用FT-IR,XRD,TEM,DSC等手段研究了β-磷酸钙(β-TCP)的结构和形态,采用SEM和直径分布探讨了优化PLLA/β-TCP纤维的电纺丝工艺。结果表明:采用湿法合成β-TCP的纳米粒子具有良好的晶型结构,直径在219~328 nm之间;采用双溶剂体系在优化条件下制备的PLLA/β-TCP杂化纳米纤维直径在500~700 nm之间,PLLA/β-TCP界面结合良好,β-TCP起到了增强作用。在湿态条件下,PLLA纤维膜的力学性能有所提高,而PLLA/β-TCP纤维膜的力学性能则呈现下降趋势。  相似文献   

9.
电纺法制备聚合物纳米纤维的研究进展   总被引:3,自引:0,他引:3  
电纺技术是一种制备聚合物纳米纤维的新方法,它可制备出直径为纳米级的超细纤维,最小直径可至1nm.电纺法制备聚合物纳米纤维具有设备简单、操作容易以及高效等优点,它是目前能直接、连续制备聚合物纳米纤维的有效方法.本文介绍了电纺过程、原理及影响纤维性能的主要因素,综述了电纺技术在生物医学材料,复合增强纤维,无机纳米纤维,导电纳米纤维等方面的应用进展,最后对电纺技术在制备聚合物纳米纤维方面的发展前景作出了展望.  相似文献   

10.
采用静电纺丝技术及煅烧法制备了氧化锌纳米纤维, 然后采用水热法将银纳米颗粒负载到了氧化锌纳米纤维表面. 利用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 能量色散X射线光谱(EDX)、 扫描电子显微镜(SEM)及透射电子显微镜(TEM)等技术对合成的Ag/ZnO纳米纤维的结构和组成进行了表征. SEM结果表明, 直径在5~100 nm之间的银纳米颗粒附着在直径在80~330 nm之间的氧化锌纤维表面形成了异质结构. 以常见的有机污染物甲基橙、 亚甲基蓝和罗丹明B等为降解底物, 对Ag/ZnO纳米纤维的光催化性能进行了表征. 结果表明, 负载银纳米颗粒后, 复合催化剂的光催化性能明显提高.  相似文献   

11.
采用静电纺丝技术及煅烧法制备了氧化锌纳米纤维,然后采用水热法将银纳米颗粒负载到了氧化锌纳米纤维表面.利用X射线衍射(XRD)、X射线光电子能谱(XPS)、能量色散X射线光谱(EDX)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等技术对合成的Ag/ZnO纳米纤维的结构和组成进行了表征.SEM结果表明,直径在5~100 nm之间的银纳米颗粒附着在直径在80~330 nm之间的氧化锌纤维表面形成了异质结构.以常见的有机污染物甲基橙、亚甲基蓝和罗丹明B等为降解底物,对Ag/ZnO纳米纤维的光催化性能进行了表征.结果表明,负载银纳米颗粒后,复合催化剂的光催化性能明显提高.  相似文献   

12.
使用静电纺丝技术和偕胺肟反应制备了三种不同直径的改性聚丙烯腈(PAN)纳米纤维膜,然后将它们作为配体分别与Fe3+进行配位反应制备改性PAN纳米纤维膜铁配合物,重点研究了三种改性PAN纳米纤维膜与Fe3+配位反应的动力学特性及其温度和Fe3+初始浓度的影响.最后将其作为非均相Fenton反应催化剂应用于染料降解反应中,考察了改性PAN纳米纤维膜直径对其催化活性的影响.结果表明,在所涉及的温度和浓度范围内,改性PAN纳米纤维膜与Fe3+之间配位反应不仅符合Langmuir和Freundlich吸附等温式,而且可理想地使用Lagergren准二级动力学方程进行描述,反应速率常数随着Fe3+初始浓度的增加而逐渐降低.在相同反应条件下,较小直径的纤维膜更容易与Fe3+发生配位反应,且反应速率常数和Fe3+配合量均随着纤维直径的降低而增大.不同直径改性PAN纳米纤维膜铁配合物在暗态条件下对染料的氧化降解反应表现出很好的催化活性,且在辐射光下其催化活性得到加强.改性PAN纳米纤维膜铁配合物的催化作用受到纤维直径的显著影响,由中等直径纳米纤维构成的配合物表现出最高的催化活性.  相似文献   

13.
静电纺丝法和气流-静电纺丝法制备聚砜纳米纤维   总被引:7,自引:0,他引:7  
应用电纺法制备了聚砜纳米纤维.设计了一种新型的气流静电纺丝装置,其特点是在喷丝头上添加了喷气组件.电纺过程中所用聚砜的特性粘数为0.97dLg,溶剂为二甲基乙酰胺,载气为氮气.研究了聚砜纳米纤维的平均直径与过程参数之间的关系.研究表明影响聚砜纳米纤维的平均直径的主要因素为电压、纺丝液的流速、喷丝头与收集器之间的距离、操作温度以及纺丝液的性质(如粘度、表面张力和电导率).纳米纤维的平均直径和直径分布用扫描电镜表征.应用这种气流静电纺丝法制备的纳米纤维的直径范围是50~500nm.所得纳米纤维的直径依赖于电压、喷丝头与收集器之间的距离以及喷丝液的浓度.结果表明,采用气流静电纺丝不仅能制备较细而且均匀的纳米纤维,而且产量更高.  相似文献   

14.
随着工业的进步,废水处理特别是印染废水的处理成为亟待解决的问题.银纳米粒子因其特殊的物理化学性能而表现出催化活性,但银纳米粒子的团聚限制了其使用,所以出现了一系列新的载体材料,如微球、薄膜和纤维等.其中电纺纳米纤维由于具有高比表面积,作为载体材料具有非常大的优势,而将常规电纺纳米纤维作为载体也已有报道.但是,将具有更高比表面积的电纺纳米纤维作为载体,特别是一种类似于树枝状结构的多尺度纳米纤维作为载体还鲜有报道.本文制备了一种多尺度结构的PA6纳米纤维膜,该纳米纤维膜由直径为50?120 nm的主纤维和10?50 nm的分支纤维构成;由于分支纤维的出现,多尺度结构纳米纤维膜的比表面积得到了提高,可以为银纳米粒子的负载提供更多附着位点.制备的多尺度结构纳米纤维膜通过银胶溶液浸渍成功地负载银纳米粒子,对制备的纳米纤维膜的形态、化学结构以及对亚甲基蓝的催化性能进行了探讨.SEM,EDS和TEM结果表明,银纳米粒子成功地负载在多尺度结构纳米纤维的表面,并且银纳米粒子的粒径以及负载量可以通过变换银胶溶液的浓度合理调控.此外,与常规PA6纳米纤维膜相比,多尺度结构纳米纤维膜更有利于银纳米粒子的分散,同样通过银胶溶液A浸渍,负载在多尺度结构纳米纤维上银纳米粒子粒径为8.6 nm,而负载在普通PA6纳米纤维上银纳米粒子粒径为11.2 nm.XPS分析表明,银纳米粒子成功地负载到多尺度结构纳米纤维上,并且经不同银胶溶液处理,纳米纤维膜的载银量不同.通过O的高能XPS分析发现,银纳米粒子与PA6分子间形成了配位键,这在一定程度上有利于Ag纳米粒子的固定,阻止了Ag纳米粒子的团聚.Ag/PA6纳米纤维膜以及多尺度结构Ag/PA6纳米纤维膜催化降解实验表明,多尺度结构Ag/PA6纳米纤维膜具有较高的催化活性,反应2 h后对10 mg/L亚甲基蓝的降解率达到98.13%,并且降解过程符合伪一级动力学.不同浸渍液浓度处理纳米纤维膜催化实验表明,Ag纳米粒子的大小以及含量都会影响纳米纤维的催化活性,纳米粒子粒径越小,其催化活性越高;不同NaBH4加入量催化体系催化实验表明,随着NaBH4加入量的增大,催化体系的降解率增高,其对催化体系的催化性能起着至关重要的作用;其他条件一定,随着染料初始浓度的增大,催化体系的催化性能下降;循环实验表明,经5次循环之后,其降解率仍高达83.5%,该纳米纤维膜具有一定的循环使用性能.  相似文献   

15.
随着工业的进步,废水处理特别是印染废水的处理成为亟待解决的问题.银纳米粒子因其特殊的物理化学性能而表现出催化活性,但银纳米粒子的团聚限制了其使用,所以出现了一系列新的载体材料,如微球、薄膜和纤维等.其中电纺纳米纤维由于具有高比表面积,作为载体材料具有非常大的优势,而将常规电纺纳米纤维作为载体也已有报道.但是,将具有更高比表面积的电纺纳米纤维作为载体,特别是一种类似于树枝状结构的多尺度纳米纤维作为载体还鲜有报道.本文制备了一种多尺度结构的PA6纳米纤维膜,该纳米纤维膜由直径为50-120 nm的主纤维和10-50 nm的分支纤维构成;由于分支纤维的出现,多尺度结构纳米纤维膜的比表面积得到了提高,可以为银纳米粒子的负载提供更多附着位点.制备的多尺度结构纳米纤维膜通过银胶溶液浸渍成功地负载银纳米粒子,对制备的纳米纤维膜的形态、化学结构以及对亚甲基蓝的催化性能进行了探讨.SEM,EDS和TEM结果表明,银纳米粒子成功地负载在多尺度结构纳米纤维的表面,并且银纳米粒子的粒径以及负载量可以通过变换银胶溶液的浓度合理调控.此外,与常规PA6纳米纤维膜相比,多尺度结构纳米纤维膜更有利于银纳米粒子的分散,同样通过银胶溶液A浸渍,负载在多尺度结构纳米纤维上银纳米粒子粒径为8.6 nm,而负载在普通PA6纳米纤维上银纳米粒子粒径为11.2 nm.XPS分析表明,银纳米粒子成功地负载到多尺度结构纳米纤维上,并且经不同银胶溶液处理,纳米纤维膜的载银量不同.通过O的高能XPS分析发现,银纳米粒子与PA6分子间形成了配位键,这在一定程度上有利于Ag纳米粒子的固定,阻止了Ag纳米粒子的团聚.Ag/PA6纳米纤维膜以及多尺度结构Ag/PA6纳米纤维膜催化降解实验表明,多尺度结构Ag/PA6纳米纤维膜具有较高的催化活性,反应2 h后对10 mg/L亚甲基蓝的降解率达到98.13%,并且降解过程符合伪一级动力学.不同浸渍液浓度处理纳米纤维膜催化实验表明,Ag纳米粒子的大小以及含量都会影响纳米纤维的催化活性,纳米粒子粒径越小,其催化活性越高;不同NaBH_4加入量催化体系催化实验表明,随着NaBH_4加入量的增大,催化体系的降解率增高,其对催化体系的催化性能起着至关重要的作用;其他条件一定,随着染料初始浓度的增大,催化体系的催化性能下降;循环实验表明,经5次循环之后,其降解率仍高达83.5%,该纳米纤维膜具有一定的循环使用性能.  相似文献   

16.
通过高压静电纺丝技术制备了聚乙烯醇/聚乙烯亚胺(PVA/PEI)纳米纤维膜, 对纤维膜进行功能化使其转化为对重金属离子具有高络合能力的聚乙烯醇/二硫代氨基甲酸盐功能化聚乙烯亚胺(PVA/DTC)纳米纤维膜. 研究了PVA/PEI纳米纤维膜的交联和功能化以及PVA/DTC纤维膜对铅离子的吸附行为. 结果表明, 高压静电纺丝法可制备出纤维直径分布均匀、 形貌良好的纳米纤维膜, 且交联、 功能化后仍能保持蓬松纳米纤维状的网状结构. PVA/DTC纳米纤维膜对铅离子吸附速率快, 吸附量容量高, 且具有良好的再生吸附能力, 是一种潜在的重金属离子高效吸附材料.  相似文献   

17.
静电纺丝法制备PLLA/g-HNTs复合纳米纤维膜及其性能研究   总被引:1,自引:0,他引:1  
以辛酸亚锡为催化剂,利用HNTs表面的羟基引发L-LA开环聚合,合成了表面接枝聚(L-乳酸)(PLLA)链段的埃洛石纳米管(g-HNTs),通过红外、热失重和透射电镜对改性前后HNTs的组成与形貌进行了观察;然后采用静电纺丝技术制备了PLLA纳米纤维膜以及不同组成的PLLA/HNTs和PLLA/g-HNTs复合纳米纤维膜,探讨了纺丝条件对纳米纤维膜形貌的影响,并对复合膜的组成、形貌、力学性能和细胞相容性进行了研究.结果表明,当HNTs与L-LA的摩尔投料比为1∶10时,g-HNTs表面PLLA链段的接枝率为14.22%,HNTs纳米管的形态在接枝后变化不大,易于在无水乙醇中分散.电压强度和进样速率对纤维膜的形貌有一定影响,当电压强度为15 kV、进样速率为1 mL/h时,电纺纤维的直径较为均匀.复合纤维膜中g-HNTs在基体PLLA中的分散性以及与基体的界面相容性要优于相应的HNTs,当g-HNTs含量高达40%时,复合纳米纤维膜中的纤维形态仍然保持较好,可以得到连续、粗细较均匀的纤维;随着HNTs和g-HNTs含量增加,复合纳米纤维膜的拉伸强度和模量先增大后下降,当HNTs和g-HNTs的含量为5%时,两种复合纳米纤维膜的拉伸强度和模量均达到最大值,但PLLA/g-HNTs组复合纳米纤维膜的拉伸强度始终大于相应的PLLA/HNTs组.体外3T3细胞培养结果显示,PLLA/g-HNTs复合纳米纤维膜具有良好的细胞相容性,且优于相应的PLLA和PLLA/HNTs纳米纤维膜.  相似文献   

18.
采用静电纺丝的方法制备了ZnS:Mn/Polyvinylpyrrolidone复合纳米纤维.使用的溶剂为水、乙醇及DMF(N,N-Dimediylfommnide),的使用有助于制备较细的纤维,电纺溶液中随着聚合物PVP浓度降低,纤维的直径变小,当PVP质量分数为6.6%时,纤维的直径是80 nm,通过荧光显微镜和荧光光谱仪的测试可以知道,该纤维能够发光.基于纤维的发光及直径较小的特性,该纤维在一维纳米光电子领域有着潜在的应用.  相似文献   

19.
刘珵  董威红  刘淼  张洋  范楼珍 《化学学报》2009,67(16):1825-1828
利用超声技术, 选择间二甲苯溶液和乙腈两种不互溶的溶剂, 首次成功地制备了C60的空心纳米壳. 选择扫描电镜(SEM), 透射电镜(TEM)等对所制得的C60的空心纳米壳的形貌及结构进行表征. C60空心纳米壳的外直径为300~400 nm, 内直径为200~300 nm, 壁厚约100 nm. X射线衍射光谱(XRD)、傅里叶红外光谱检测结果表明其为C60分子组成的单晶结构. 利用电泳方法制备了均匀的C60的空心纳米壳膜电极, 并利用电沉积方法在所制备的C60的空心纳米壳电极表面沉积了金(Au)纳米颗粒. 为进一步沉积其它金属, 研究其在生物传感器及燃料电池方面的应用提供了基础.  相似文献   

20.
通过电纺丝法结合原位还原及原位氧化反应, 成功制备了均匀负载Ag/AgCl复合纳米粒子/聚丙烯腈(PAN)复合纳米纤维膜. 首先利用电纺丝技术制备了PAN/AgNO3复合纳米纤维, 然后用乙二醇将硝酸银还原成银纳米粒子, 最后采用三氯化铁溶液对材料进行原位氧化. 所得纤维膜材料可以作为高效的可见光催化剂, 具有高可见光利用率, 优异的柔性和高光催化动力学等特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号