首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究设计了一种用于硼中子俘获治疗(BNCT)的紧凑型固定磁场交变梯度(FFAG)加速器。首先采用FFAG加速器磁铁的线性简化模型,计算确定了加速器的基本结构参数;再用WIN.AGILE程序进行了磁聚焦结构的设计和优化,得到了Beta函数、色散函数、包络函数及工作点等;采用MAD程序对设计结果进行了复算,并对两种程序的计算结果作了进一步的对比分析;最后采用ZGOUBI程序进行非线性磁场下粒子追踪。FFAG加速器的超周期为6,能量为11 MeV,场指数k为1.9,周长为11.1795 m,结构紧凑。分析结果表明,优化设计的FFAG加速器达到了预期的设计目标。  相似文献   

2.
田永顺  胡志良  童剑飞  陈俊阳  彭向阳  梁天骄 《物理学报》2018,67(14):142801-142801
在硼中子俘获治疗(BNCT)装置中,束流整形体(BSA)的作用是将中子源产生的快中子束流慢化至超热中子能区(0.5 eVE10 keV),并尽可能减弱快中子、热中子和γ射线的成分,同时保证中子的方向性,其设计与优化是BNCT装置设计工作的核心内容之一.本文采用3.5 MeV,10 mA的质子束轰击锂靶,由核反应~7Li(p,n)~7Be产生的中子为源项,针对BSA的慢化体材料和结构、γ屏蔽层和热中子吸收层的厚度等参数进行蒙特卡罗模拟设计与优化.研究发现,采用Fluental和LiF两种慢化材料间隔2 cm层状堆叠的三明治BSA构型,在保证快中子剂量成分(D_f/φ_(epi)),γ剂量成分(D_γ/φ_(epi))和热中子比例φ_(th)/φ_(epi)满足IAEA-TECDOC-1223报告推荐要求的同时,在BSA出口处超热中子注量率优于单独使用Fluental和单独使用LiF的BSA设计.BSA出口处修正的Synder人头几何模型中的剂量分布计算结果显示:上述三明治构型的深度剂量分布与单独使用Fluental材料构型的结果基本相当,优于单独使用LiF构型,表明Fluental和LiF层状堆叠的三明治BSA构型是一种可行的BSA结构.  相似文献   

3.
硼中子俘获治疗的蒙特卡罗方法模拟   总被引:2,自引:0,他引:2  
邱有恒  邓力  应阳君  肖刚 《中国物理 C》2003,27(10):936-942
用通用蒙特卡罗程序MCNP模拟了粒子在人脑中的输运过程. 吸收剂量率主要来自以下四个反应:10B(n,α)7Li,14N(n,p)14C,1H(n,γ)2D,快中子弹性散射反应.对肿瘤区的贡献主要来自硼中子吸收反应.结果表明,超热中子比热中子适合于深肿瘤的治疗,而热中子对浅肿瘤的治疗有优越性,比如皮肤癌.同确定论方法的结果相比,蒙特卡罗方法不失为一种模拟中子俘获治疗的好工具.  相似文献   

4.
硼中子俘获治疗(Boron Neutron Capture Therapy,BNCT)是一种新型的精准放射治疗方法,束流整形组件(Beam Shaping Assembly,BSA)作为硼中子俘获治疗装置的重要组成部分,对于产生适用于BNCT的中子束至关重要.通过BSA可以将快中子慢化到适当的能量范围,并且减少其他不需...  相似文献   

5.
硼中子俘获治疗(boron neutron capture therapy,BNCT)是一种结合含硼-10靶向药物和重离子肿瘤治疗的二元精确放射治疗方法,但经过近70年的发展,BNCT仍然未能真正进入临床应用.含硼-10药物在体内的浓度分布测量方法不能满足临床需求,影响治疗的效果和安全性,是目前BNCT亟待解决的核心问题之一.本文对目前含硼-10药物浓度分布测量方法进行综述,包括已经用于临床的有创估算方法及在研的单光子发射断层成像方法、正电子发射断层扫描方法及核磁共振方法等,分析各种方案的优势与局限性.并根据硼-10元素旋磁比低及磁共振横向弛豫时间极短的特点,从理论上简要分析了基于超短回波时间磁共振成像的硼-10体内分布定量测量方法的可行性.  相似文献   

6.
中国散裂中子源加速器质子束流加速能量为1.6 GeV,重复频率为25 Hz,撞击固体金属靶产生散射中子,一期工程的打靶束流功率为100 kW。直线加速器的设计束流流强为15 mA,输出能量为81 MeV。射频加速和聚束系统包括一台射频四极场加速器、中能束流传输线的两个聚束器、四节漂移管直线加速器加速腔和直线-环束流传输线的一个散束器,与之相对应,共有8个单元在线运行的射频功率源为其提供所需的射频功率。目前,直线射频功率源系统预研项目已全部完成,各项性能参数均已达到设计指标,当前正处在批产安装调试阶段。151013  相似文献   

7.
中国散裂中子源加速器质子束流加速能量为1.6 GeV,重复频率为25 Hz,撞击固体金属靶产生散射中子,一期工程的打靶束流功率为100 kW。直线加速器的设计束流流强为15 mA,输出能量为81 MeV。射频加速和聚束系统包括一台射频四极场加速器、中能束流传输线的两个聚束器、四节漂移管直线加速器加速腔和直线-环束流传输线的一个散束器,与之相对应,共有8个单元在线运行的射频功率源为其提供所需的射频功率。目前,直线射频功率源系统预研项目已全部完成,各项性能参数均已达到设计指标,当前正处在批产安装调试阶段。151013  相似文献   

8.
C6D6闪烁体探测系统结合脉冲权重技术被广泛应用于中子俘获反应截面测量研究.实验中采用的样品厚度直接影响中子束流时间,同时也影响实验数据的可靠性.本文基于中国散裂中子源反角白光束线(CSNS Back-n)C6D6探测系统,对比研究了不同厚度的镥(Lu)样品中子俘获反应截面的实验测量.利用GEANT4蒙特卡罗程序模拟了考虑样品厚度的探测系统光响应,计算出精确的脉冲权重函数.实验中,通过采用较长中子飞行距离和本底测量,得到了高精度的共振区产额分布.通过R矩阵理论分析产额分布,得到了相应的实验共振参数.结果发现,较厚Lu样品因其厚度效应导致共振曲线发生变化,实验共振参数与ENDF/B-Ⅷ.0评价数据库差距较大;然而,较薄Lu样品实验结果能够很好地再现ENDF/B-Ⅷ.0评价数据.  相似文献   

9.
基于加速器中子源的硼中子俘获治疗(Boron Neutron Capture Therapy, BNCT)是新一代的放射治疗方法,束流整形体(Beam Shaping Assembly, BSA)作为硼中子俘获治疗装置的重要组成部分,其作用是将中子源中的快中子束流慢化至超热中子能区(0.5 eV~10 keV),并尽可能减少快中子、热中子以及$\gamma $射线的成分,使其满足BNCT用于治疗的中子束要求。本工作基于蒙特卡罗软件包Geant4(Geometry and Tracking),以2.5 MeV,10 mA质子流强的7Li(p, n)7Be中子源为对象,研究分析了AlF3 、Fluental、Al2O3、Al作为慢化体材料时,不同的厚度对束流出口处的超热中子注量率、超热中子注量与热中子注量比值、快中子成分、$ \gamma $成分所产生的影响。计算表明,当选用厚度为25 cm的AlF3作为慢化体材料时,经过整形慢化后的超热中子束的束流参数,均满足国际原子能机构(International Atomic Energy Agency, IAEA)的中子束流参数推荐值。  相似文献   

10.
上海光源储存环高频功率源   总被引:1,自引:0,他引:1  
上海光源(SSRF)是一台能量为3.5GeV的中能第三代光源. 储存环的设计束流是300mA, 总的束流功率约625kW, 借鉴国际先进经验, 从THALES等公司引进500MHz 300kW (CW)高频发射机(包括速调管和相应的PSM型电源)及350kW (CW)环流器等作为三套高频功率源的主体, 一一供给三套超导高频腔, 加速电子以补偿其同步辐射以及其他功率损耗. 近一年来我们完成了储存环高频厅和其水冷、风冷、配电系统的建设, 4台速调管的制造厂验收测试, 三套发射机的就位安装和调试, 第一套发射机的现场验收测试, 第一台环流器的安装和高功率验收测试, 第一套高频功率源的高功率传输系统在不同反射相位下的满功率老炼. 第二、三套发射机的现场验收测试正在进行中, 预计10月份全部完成. 迄今为止所有的验收项目均达到技术指标. 本文简要地叙述了SSRF高频功率源的选型、技术指标、设计方案、总体布局, 重点介绍了现场验收测试的结果.  相似文献   

11.
介绍了252Cf源驱动功率谱密度法测量原理,采用硬件和软件相结合的方式构建实现了一种实际的测量系统和研究平台,以服务于反应堆核参数测量。描述了基于3通道、1 GHz采样率和1 ns同步精度的超高速数据采集卡的中子脉冲序列检测方法,并设计了PC机端的数据处理流程和功率谱密度分析算法。实际测量结果表明,该252Cf源驱动功率谱密度法测量系统能准确高效地得到核随机过程的相关函数和功率谱密度等重要标签参数。  相似文献   

12.
介绍了252Cf源驱动功率谱密度法测量原理,采用硬件和软件相结合的方式构建实现了一种实际的测量系统和研究平台,以服务于反应堆核参数测量。描述了基于3通道、1 GHz采样率和1 ns同步精度的超高速数据采集卡的中子脉冲序列检测方法,并设计了PC机端的数据处理流程和功率谱密度分析算法。实际测量结果表明,该252Cf源驱动功率谱密度法测量系统能准确高效地得到核随机过程的相关函数和功率谱密度等重要标签参数。  相似文献   

13.
日前,由中国散裂中子源直线射频系统与中国原子能科学研究院合作研制的串联谐振脉冲高压电源样机调试成功,并于2008年6月5日经过专家测试组现场测试,其主要技术指标均已达到设计要求,谐振电抗器Q值大于350,在速调管阴极高压66kV、高频输出功率380kW的情况下,电源整机效率达88%,工作稳定可靠,专家验收组一致同意通过产品验收。  相似文献   

14.
随着磁约束聚变实验装置对中性束注入器的输出束流强度与脉冲时间的要求越来越高,开展高功率大面积射频离子源的研究迫在眉睫。为了实现大面积、高密度均匀等离子体放电,基于多驱动射频离子源的设计是当前的发展趋势,而阻抗匹配网络是射频功率源将最大功率输送至线圈并耦合至等离子体的关键,故对其结构设计和调谐特性的研究是不可或缺的。基于前期在单驱动射频离子源的研究基础上,结合双驱动射频离子源的放电需求,开展了双驱动阻抗匹配网络优化结构的设计与分析,通过实验中对匹配网络的调谐,成功实现了140 kW高功率和25 kW/1 000 s长脉冲的稳定运行。随后在等离子体稳定放电的基础上研究了两个驱动器之间的功率分配均匀性问题,实验结果表明了该匹配网络的优化设计合理可行,上下驱动器的射频功率分配基本均匀。  相似文献   

15.
上海光源(SSRF)是一台能量为3.5GeV的中能第三代光源.储存环的设计束流是300mA,总的束流功率约625kW,借鉴国际先进经验,从THALES等公司引进500MHz 300kW(cw)高频发射机(包括速调管和相应的PSM型电源)及350kW(Cw)环流器等作为三套高频功率源的主体,一一供给三套超导高频腔,加速电子以补偿其同步辐射以及其他功率损耗.近一年来我们完成了储存环高频厅和其水冷、风冷、配电系统的建设,台速调管的制造厂验收测试,三套发射机的就位安装和调试,第一套发射机的现场验收测试,第一台环流器的安装和高功率验收测试,第一套高频功率源的高功率传输系统在不同反射相位下的满功率老炼.第二、三套发射机的现场验收测试正在进行中,预计10月份全·部完成.迄今为止所有的验收项目均达到技术指标.本文简要地叙述了SSRF高频功率源的选型、技术指标、设计方案、总体布局,重点介绍了现场验收测试的结果.  相似文献   

16.
根据用户的实际要求,设计了一种高频功率放大系统。为了获得足够大的输出功率,采用了由功率分配器和功率合成器组成的四级合成方式,利用多个750W功放模块,实现了高达40kW的功率输出;设计了以PLC为核心的监控系统,对高频功率放大系统中的前级功放、末级功放等各个部分的运行状态进行监控,利用触摸屏实现人机交互操作。实验测试结果表明该系统的合成效率达到90%以上,满足了高频功率放大的要求,系统工作稳定、可靠,具备人机交互和远程控制等功能。  相似文献   

17.
ADS注入器Ⅰ高频四极场(RFQ)功率源系统将为325MHz RFQ提供连续波功率,使束流离开RFQ时,其能量达到几MeV。功率源系统除了补偿RFQ腔耗外,还必须提供足够的功率以保证RFQ中的加速电场。ADS注入器ⅠRFQ功率源系统主要包括600kW连续波速调管、80kV/18A基于脉冲步进调制技术的PSM电源、环流器以及相应的波导传输系统等。根据ADS总体指标和RFQ的相关技术参数,提出了功率源的总体布局、技术指标以及设计要求等,在此基础上完成系统安装与调试,并通过专家组测试与验收。  相似文献   

18.
ADS注入器Ⅰ高频四极场(RFQ)功率源系统将为325 MHz RFQ提供连续波功率,使束流离开RFQ时,其能量达到几MeV。功率源系统除了补偿RFQ腔耗外,还必须提供足够的功率以保证RFQ中的加速电场。ADS注入器Ⅰ RFQ功率源系统主要包括600 kW连续波速调管、80 kV/18 A基于脉冲步进调制技术的PSM电源、环流器以及相应的波导传输系统等。根据ADS总体指标和RFQ的相关技术参数,提出了功率源的总体布局、技术指标以及设计要求等,在此基础上完成系统安装与调试,并通过专家组测试与验收。  相似文献   

19.
连续波核磁共振实验是近代物理实验中具有代表性的一个实验.本文提出一种新型磁铁控制功率源设计,该功率源能够产生有直流偏置的交变电流,直流偏置大小与交变电流的大小和波形都可调节,驱动绕在永磁体上的一组线圈,改变主磁场大小和扫场的扫场模式.  相似文献   

20.
针对252Cf自发裂变中子源构成的核信息系统,以实际所测随机中子脉冲数据的自相关函数为研究对象,借助仿真实验, 利用Elman神经网络对不同质量核材料进行识别。在实测数据的基础上,通过叠加随机抖动,模拟产生了不同质量核材料的相关函数样本,并将其用于神经网络的训练与测试,实验结果表明,训练过的Elman神经网络能够较好地识别相关函数的特征,分辨不同质量的核材料,平均识别率达到85%,综合平均误差为0.04,且具有较高的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号