首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is the second one in the series of two papers devoted to detailed investigation of the response regimes of a linear oscillator with attached nonlinear energy sink (NES) under harmonic external forcing and assessment of possible application of the NES for vibration absorption and mitigation. In this paper, we study the performance of a strongly nonlinear, damped vibration absorber with relatively small mass attached to a periodically excited linear oscillator. We present a nonlinear absorber tuning procedure in the vicinity of (1:1) resonance which provides the best total system energy suppression, using analytical and numerical tools. A linear absorber is also tuned according to the same criterion of total system energy suppression as the nonlinear one. Both optimally tuned absorbers are compared under common parameters of damping, external forcing but different absorber stiffness characteristics; certain cases for which nonlinear absorber is preferable over the linear one are revealed and confirmed numerically.  相似文献   

2.
Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The method of multiple scales is used to obtain an autonomous system from a non-autonomous system of ordinary differential equations governing non-linear oscillations of an imperfect circular plate. The Melnikov's method for heteroclinic orbits of the autonomous system is used to obtain the criteria for chaotic motion. It is shown that the existence of heteroclinic orbits in the unperturbed system implies chaos arising from breaking of heteroclinic orbits under perturbation. The validity of the result is checked numerically. It is also observed numerically that chaos can appear due to breaking of invariant tori under perturbation.  相似文献   

3.
We present a theoretical study of the dynamics of the coupled system of Jiang, McFarland, Bergman, and Vakakis. It comprises a harmonically excited linear subsystem weakly coupled to an essentially nonlinear oscillator. We explored the rich dynamics exhibited by this coupled system by determining its periodic responses and their bifurcations. Not surprisingly, we found a lot of interesting dynamics over a broad frequency range: cyclic-fold, Hopf, symmetry-breaking, and period-doubling bifurcations; phase-locked motions; regions with multiple coexisting solutions; hysteresis; and chaos. We did not find any occurrence of energy transfer via modulation (also known as zero-to-one internal resonance); theoretically, the possibility of its occurrence was ruled out for systems with weak nonlinearity and damping. Finally, we investigated the ef fectiveness of the so-called nonlinear energy sink (NES) in vibration attenuation of forced linear structures. We found that the NES results in an increase in the vibration amplitude of the linear subsystem, especially when the damping is low, contrary to the claim made by Jiang et al. Also, we did not find any indication of nonlinear energy pumping or localization of energy in the NES, away from the directly forced linear subsystem, indicating that the NES is not ef fective for controlling the vibrations of forced linear structures.  相似文献   

4.
The use of non-linear energy sink to passively control vibrations of a non-linear main structure under the effect of bi-frequency harmonic excitation is addressed here. The excitation is assumed to induce both 1:1 and 1:3 resonance, and the response of the system is studied after using the Multiple Scale/Harmonic Balance Method, applied to obtain amplitude modulation equations in the slow time scale. The efficiency of the non-linear energy sink to reduce or suppress vibrations of the main structure is finally discussed.  相似文献   

5.
This paper studies the vibration absorber for a fluid-conveying pipe, where the lever-type nonlinear energy sink (LNES) and spring supports are coupled to the asymmetric ends of the system. The pseudo-arc-length method integrated with the harmonic balance method is used to investigate the steady-state responses analytically. Meanwhile, the numerical solution of the fluid-conveying pipe is calculated with the Runge-Kutta method. Moreover, a special response, called the collapsible closed detached response (CCDR), is first observed when the vibration response of mechanical structures is studied. Then, the relationship between the CCDR and the main structure primary response (PR) is obtained. In addition, the closed detached response (CDR) is also observed to research the resonance response of the fluid-conveying pipe. The appearance of either the CCDR or the CDR does affect the resonance attenuation. Furthermore, the mentioned two phenomena underline that the trend of vibration responses under external excitation goes continuous and gradual. Besides, the main advantage of the LNES is presented by contrasting the LNES with the nonlinear energy sink (NES) coupled to the same pipe system. It is found that the LNES can reduce the resonance response amplitude by 91.33%.  相似文献   

6.
The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES) are investigated. The linear system is excited by a harmonic and random base excitation, consisting of a mass block, a linear spring, and a linear viscous damper. The NES is composed of a mass block, a linear viscous damper, and a spring with ideal cubic nonlinear stiffness. Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal...  相似文献   

7.
This paper deals with damped transverse vibrations of elastically coupled double-beam system under even compressive axial loading. Each beam is assumed to be elastic, extensible and supported at the ends. The related stationary problem is proved to admit both unimodal (only one eigenfunction is involved) and bimodal (two eigenfunctions are involved) buckled solutions, and their number depends on structural parameters and applied axial loads. The occurrence of a so complex structure of the steady states motivates a global analysis of the longtime dynamics. In this regard, we are able to prove the existence of a global regular attractor of solutions. When a finite set of stationary solutions occurs, it consists of the unstable manifolds connecting them.  相似文献   

8.
The sub- and super-critical dynamics of an axially moving beam subjected to a transverse harmonic excitation force is examined for the cases where the system is tuned to a three-to-one internal resonance as well as for the case where it is not. The governing equation of motion of this gyroscopic system is discretized by employing Galerkin’s technique which yields a set of coupled nonlinear differential equations. For the system in the sub-critical speed regime, the periodic solutions are studied using the pseudo-arclength continuation method, while the global dynamics is investigated numerically. In the latter case, bifurcation diagrams of Poincaré maps are obtained via direct time integration. Moreover, for a selected set of system parameters, the dynamics of the system is presented in the form of time histories, phase-plane portraits, and Poincaré maps. Finally, the effects of different system parameters on the amplitude-frequency responses as well as bifurcation diagrams are presented.  相似文献   

9.
Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally, but the lack of studies of real environmental conditions on these absorbers is felt. The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES). In this paper, the Burgers model is assumed for the viscoelasticity in an NES, and a linear oscillator system is considered for inve...  相似文献   

10.
A linear oscillator (LO) coupled with two vibro-impact (VI) nonlinear energy sinks (NES) in parallel is studied under periodic and transient excitations, respectively. The objective is to study response regimes and to compare their efficiency of vibration control. Through the analytical study with multiple scales method, two slow invariant manifolds (SIM) are obtained for two VI NES, and different SIM that result from different clearances analytically supports the principle of separate activation. In addition, fixed points are calculated and their positions are applied to judge response regimes. Transient responses and modulated responses can be further explained. By this way, all analysis is around the most efficient response regime. Then, numerical results demonstrate two typical responses and validate the effectiveness of analytical prediction. Finally, basic response regimes are experimentally observed and analyzed, and they can well explain the complicated variation of responses and their corresponding efficiency, not only for periodic excitations with a fixed frequency or a range of frequency, but also for transient excitation. Generally, vibration control is more effective when VI NES is activated with two impacts per cycle, whatever the types of excitation and the combinations of clearances. This observation is also well reflected by the separate activation of two VI NES with two different clearances, but at different levels of displacement amplitude of LO.  相似文献   

11.
We study the dynamics of a system of coupled linear oscillators with a multi-DOF end attachment with essential (nonlinearizable) stiffness nonlinearities. We show numerically that the multi-DOF attachment can passively absorb broadband energy from the linear system in a one-way, irreversible fashion, acting in essence as nonlinear energy sink (NES). Strong passive targeted energy transfer from the linear to the nonlinear subsystem is possible over wide frequency and energy ranges. In an effort to study the dynamics of the coupled system of oscillators, we study numerically and analytically the periodic orbits of the corresponding undamped and unforced hamiltonian system with asymptotics and reduction. We prove the existence of a family of countable infinity of periodic orbits that result from combined parametric and external resonance interactions of the masses of the NES. We numerically demonstrate that the topological structure of the periodic orbits in the frequency–energy plane of the hamiltonian system greatly influences the strength of targeted energy transfer in the damped system and, to a great extent, governs the overall transient damped dynamics. This work may be regarded as a contribution towards proving the efficacy the utilizing essentially nonlinear attachments as passive broadband boundary controllers. PACS numbers: 05.45.Xt, 02.30.Hq  相似文献   

12.
This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.  相似文献   

13.
14.
In this paper a harmonically excited linear oscillator with a play is investigated. Direct numerical simulation and numerical continuation techniques were employed to study the system behaviour. To conduct the numerical analysis, the system differential equations were transformed into the autonomous form and were then solved using our newly developed in-house Matlab-based computational suite ABESPOL [1]. The results are presented in form of trajectories and Poincaré maps on the phase plane, bifurcation diagrams and basins of attraction. The bifurcation analysis was supported by a path following method. The influence of each system parameter (except gap) on the system dynamics was studied in detail. The bifurcations known as interior crisis and boundary crisis were observed and discussed in this work. Notably, the parameter regions where various types of grazing induced bifurcations occurred were detected and investigated.  相似文献   

15.
The aim of this paper is to show how Jacobi elliptic functions in combination with the averaging and the harmonic balance methods can be applied to obtain the approximate solution of two coupled, ordinary differential equations having a spring with cubic nonlinearity and subjected to driving forces of elliptic type. By an appropriate choice of the system parameter values, it is possible to show that our derived solution represents the exact steady-state solution of the undamped Duffing equation with driving force of elliptic type. At the end of this work, we also demonstrate the validity of our derived solution by comparing the amplitude–time response curves with those of the numerical integration solutions.  相似文献   

16.
17.
Preliminary report on the energy balance for nonlinear oscillations   总被引:1,自引:0,他引:1  
In this paper, a reliable technique for calculating angular frequencies of nonlinear oscillators is developed. The new algorithm offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. Some illustrative examples are given.  相似文献   

18.
In this paper we examine the response of a typical nonlinear system that is subjected to parametric excitation. Particular attention is paid to how basins of attraction evolve such that the global transient stability of the system may be assessed. We show that at a forcing level that is considerably smaller than that at which the steady-state attractor loses its stability, there may exist a rapid erosion and stratification of the basin, signifying a global loss of engineering integrity of the system.We also show, for a system near its equilibrium state, that the boundaries in parameter space can become fractal. The significance of such an analysis is not only that it corresponds to a failure locus for a system subjected to a sudden pulse of excitation, but since the phase-space basin is often eroded throughout its central region, the determination of basin boundaries in control space can often reflect the characteristics of the phase-space basin structure, and hence on the macroscopic level they provide information regarding the global transient stability of the system.  相似文献   

19.
The present study deals with nonlinear energy pumping which consists in passive irreversible transfer of energy from a linear structure to a nonlinear one. Various results (theoretical, numerical, and experimental) about energy pumping based on recent works are given. Thus, the phenomenon is studied for different excitations: transient and periodical. Moreover, advantages of such a system are carried out in particular efficiency of this phenomenon. That is why the robustness and comparison with classical tuned mass damper are analyzed. An application is considered with physical experiment using a reduced scale building.  相似文献   

20.
This paper is mainly dealing with the stochastic responses of nonlinear vibro-impact (VI) system coupled with viscoelastic force excited by colored noise. By the aid of approximate conversion for the viscoelastic force, the original stochastic VI system is transformed into an equivalent stochastic system without viscoelastic term. Then, the equations of the converted system are simplified by non-smooth transformation, and the stochastic averaging method is employed to solve the above simplified system. A Van der Pol VI oscillator coupled with viscoelastic force is worked out in detail to illustrate the application of the mentioned method, and therewith the analytical solutions fit the numerical simulation results based on the original system. Therefore, the present analytical means of investigating this system is proved to be feasible. Additionally, the exploration of stochastic P-bifurcation by two different ways is also demonstrated in this paper through varying the value of the certain system parameters. Besides, it shows a noteworthy fact that assigning zero or a positive value to the magnitude of viscoelastic force can also lead to the bimodal shape of different degrees in the process of stochastic bifurcations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号