首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stable barrier-projection and barrier-Newton methods in linear programming   总被引:4,自引:0,他引:4  
The present paper is devoted to the application of the space transformation techniques for solving linear programming problems. By using a surjective mapping the original constrained optimization problem is transformed to a problem in a new space with only equality constraints. For the numerical solution of the latter problem the stable version of the gradient-projection and Newton's methods are used. After an inverse transformation to the original space a family of numerical methods for solving optimization problems with equality and inequality constraints is obtained. The proposed algorithms are based on the numerical integration of the systems of ordinary differential equations. These algorithms do not require feasibility of the starting and current points, but they preserve feasibility. As a result of a space transformation the vector fields of differential equations are changed and additional terms are introduced which serve as a barrier preventing the trajectories from leaving the feasible set. A proof of a convergence is given.Dedicated to Professor George B. Dantzig on the occasion of his eightieth birthday.Research was supported by the grant N93-012-450 from Russian Scientific Fund.  相似文献   

2.
本文基于最大割问题的半定规划松弛,利用矩阵分解的方法给出了与半定规划松弛等价的非线性规划模型,提出一种序列线性规划方法求解该模型.并在适当的条件下,证明了算法的全局收敛性.数值实验表明:序列线性规划方法在时间上要优于半定规划的内点算法.所以序列线性规划方法能更有效地求解大规模的最大割问题的半定规划松弛.  相似文献   

3.
将0-1离散规划通过一个非线性等式约束表示为[0,1]区间上等价的连续变量非线性规划列式.对非线性等式约束的问题进行了两种方法的处理.第一种方法使用乘子法,第二种方法将非线性的等式约束近似为一个非线性的不等式约束,均利用遗传算法程序GENOCOP进行了求解.对多个算例进行了计算,结果表明了该方法的可行性和有效性.  相似文献   

4.
非线性-线性二层规划问题的罚函数方法   总被引:3,自引:1,他引:2  
利用下层问题的K-T最优性条件将下层为线性规划的一类非线性二层规划转化成相应的单层规划,同时取下层问题的互补条件为罚项,构造了该类非线性二层规划的罚问题.通过对相应罚问题性质的分析,得到了该类非线性二层规划问题的最优性条件,同时设计了该类二层规划问题的求解方法.数值结果表明该方法是可行、有效的.  相似文献   

5.
Several numerical methods for solving the nonlinear two-point boundary value problem associated with an optimum spacecraft trajectory are considered. A comparative evaluation of the methods is made to determine the relative merits of each method. Particular attention is given to such characteristics as the simplicity of formulation and implementation, the convergence sensitivity, the computing time required, and the computer storage requirements. The methods considered are the perturbation method, the quasilinearization method, and the gradient method. The numerical comparison is made by considering a two-dimensional, low-thrust, minimum-time, Earth-Mars trajectory.The authors are greatly indebted to Mr. Robert D. Witty, Lockheed Electronics Company, for providing the excellent programming support.  相似文献   

6.
Free-sign pure discrete signomial (FPDS) terms are vital to and are frequently observed in many nonlinear programming problems, such as geometric programming, generalized geometric programming, and mixed-integer non-linear programming problems. In this study, all variables in the FPDS term are discrete variables. Any improvement to techniques for linearizing FPDS term contributes significantly to the solving of nonlinear programming problems; therefore, relative techniques have continually been developed. This study develops an improved exact method to linearize a FPDS term into a set of linear programs with minimal logarithmic numbers of zero-one variables and constraints. This method is tighter than current methods. Various numerical experiments demonstrate that the proposed method is significantly more efficient than current methods, especially when the problem scale is large.  相似文献   

7.
Bifurcation and continuation techniques are introduced as a class of methods for investigating the parametric nonlinear programming problem. Motivated by the Fritz John first-order necessary conditions, the parametric programming problem is first reformulated as a closed system of nonlinear equations which contains all Karush-Kuhn-Tucker and Fritz John points, both feasible and infeasible solutions, and relative minima, maxima, and saddle points. Since changes in the structure of the solution set and critical point type can occur only at singularities, necessary and sufficient conditions for the existence of a singularity are developed in terms of the loss of a complementarity condition, the linear dependence constraint qualification, and the singularity of the Hessian of the Lagrangian on a tangent space. After a brief introduction to elementary bifurcation theory, some simple singularities in this parametric problem are analyzed for both branching and persistence of local minima. Finally, a brief introduction to numerical continuation and bifurcation procedures is given to indicate how these facts can be used in a numerical investigation of the problem.This research was supported by the Air force Office of Scientific Research through grant number AFOSR-88-0059.  相似文献   

8.
The objective of multihazard structural engineering is to develop methodologies for achieving designs that are safe and cost-effective under multiple hazards. Optimization is a natural tool for achieving such designs. In general, its aim is to determine a vector of design variables subjected to a given set of constraints, such that an objective function of those variables is minimized. In the particular case of structural design, the design variables may be member sizes; the constraints pertain to structural strength and serviceability (e.g., keeping the load-induced stresses and deflections below specified thresholds); and the objective function is the structure cost or weight. In a multihazard context, the design variables are subjected to the constraints imposed by all the hazards to which the structure is exposed. In this paper, we formulate the multihazard structural design problem in nonlinear programming terms and present a simple illustrative example involving four design variables and two hazards: earthquake and strong winds. Results of our numerical experiments show that interior-point methods are significantly more efficient than classical optimization methods in solving the nonlinear programming problem associated with our illustrative example.  相似文献   

9.
Many global optimization approaches for solving signomial geometric programming problems are based on transformation techniques and piecewise linear approximations of the inverse transformations. Since using numerous break points in the linearization process leads to a significant increase in the computational burden for solving the reformulated problem, this study integrates the range reduction techniques in a global optimization algorithm for signomial geometric programming to improve computational efficiency. In the proposed algorithm, the non-convex geometric programming problem is first converted into a convex mixed-integer nonlinear programming problem by convexification and piecewise linearization techniques. Then, an optimization-based approach is used to reduce the range of each variable. Tightening variable bounds iteratively allows the proposed method to reach an approximate solution within an acceptable error by using fewer break points in the linearization process, therefore decreasing the required CPU time. Several numerical experiments are presented to demonstrate the advantages of the proposed method in terms of both computational efficiency and solution quality.  相似文献   

10.
In this paper, we present a novel sequential convex bilevel programming algorithm for the numerical solution of structured nonlinear min–max problems which arise in the context of semi-infinite programming. Here, our main motivation are nonlinear inequality constrained robust optimization problems. In the first part of the paper, we propose a conservative approximation strategy for such nonlinear and non-convex robust optimization problems: under the assumption that an upper bound for the curvature of the inequality constraints with respect to the uncertainty is given, we show how to formulate a lower-level concave min–max problem which approximates the robust counterpart in a conservative way. This approximation turns out to be exact in some relevant special cases and can be proven to be less conservative than existing approximation techniques that are based on linearization with respect to the uncertainties. In the second part of the paper, we review existing theory on optimality conditions for nonlinear lower-level concave min–max problems which arise in the context of semi-infinite programming. Regarding the optimality conditions for the concave lower level maximization problems as a constraint of the upper level minimization problem, we end up with a structured mathematical program with complementarity constraints (MPCC). The special hierarchical structure of this MPCC can be exploited in a novel sequential convex bilevel programming algorithm. We discuss the surprisingly strong global and locally quadratic convergence properties of this method, which can in this form neither be obtained with existing SQP methods nor with interior point relaxation techniques for general MPCCs. Finally, we discuss the application fields and implementation details of the new method and demonstrate the performance with a numerical example.  相似文献   

11.
In this article, a numerical scheme on the basis of the measure theoretical approach for extracting approximate solutions of optimal control problems governed by nonlinear Fredholm integral equations is presented. The problem is converted to a linear programming in which its solution leads to construction of approximate solutions of the original problem. Finally, some numerical examples are given to demonstrate the efficiency of the approach.  相似文献   

12.
A method for the numerical solution of state-constrained optimal control problems subject to higher-index differential-algebraic equation (DAE) systems is introduced. For a broad and important class of DAE systems (semiexplicit systems with algebraic variables of different index), a direct multiple shooting method is developed. The multiple shooting method is based on the discretization of the optimal control problem and its transformation into a finite-dimensional nonlinear programming problem (NLP). Special attention is turned to the mandatory calculation of consistent initial values at the multiple shooting nodes within the iterative solution process of (NLP). Two different methods are proposed. The projection method guarantees consistency within each iteration, whereas the relaxation method achieves consistency only at an optimal solution. An illustrative example completes this article.  相似文献   

13.
基于高斯伪谱的最优控制求解及其应用   总被引:2,自引:0,他引:2  
研究一种基于高斯伪谱法的具有约束受限的最优控制数值计算问题.方法将状态演化和控制规律用多项式参数化近似,微分方程用正交多项式近似.将最优控制问题求解问题转化为一组有约束的非线性规划求解.详细论述了该种近似方法的有效性.作为该种方法的应用,讨论了一个障碍物环境下的机器人最优路径生成问题.将机器人路径规划问题转化为具有约束条件最优控制问题,然后用基于高斯伪谱的方法求解,并给出了仿真结果.  相似文献   

14.
求解摩擦接触问题的一个非内点光滑化算法   总被引:8,自引:0,他引:8  
给出了一个求解三维弹性有摩擦接触问题的新算法,即基于NCP函数的非内点光滑化算法.首先通过参变量变分原理和参数二次规划法,将三维弹性有摩擦接触问题的分析归结为线性互补问题的求解;然后利用NCP函数,将互补问题的求解转换为非光滑方程组的求解;再用凝聚函数对其进行光滑化,最后用NEWTON法解所得到的光滑非线性方程组.方法具有易于理解及实现方便等特点.通过线性互补问题的数值算例及接触问题实例证实了该算法的可靠性与有效性.  相似文献   

15.
关于TLS问题的可解性   总被引:4,自引:1,他引:3  
刘新国 《计算数学》1992,14(2):140-146
§1.引言如无特殊说明,本文沿用[4]中的记号和术语.Golub和Van Loan于1980年引入了下述完全最小二乘问题(简称TLS问题):  相似文献   

16.
The problem of minimizing a nonlinear function with nonlinear constraints when the values of the objective, the constraints and their gradients have errors, is studied. This noise may be due to the stochastic nature of the problem or to numerical error.Various previously proposed methods are reviewed. Generally, the minimization algorithms involve methods of subgradient optimization, with the constraints introduced through penalty, Lagrange, or extended Lagrange functions. Probabilistic convergence theorems are obtained. Finally, an algorithm to solve the general convex (nondifferentiable) programming problem with noise is proposed.Originally written for presentation at the 1976 Budapest Symposium on Mathematical Programming.  相似文献   

17.
《Applied Mathematical Modelling》2014,38(7-8):2000-2014
Real engineering design problems are generally characterized by the presence of many often conflicting and incommensurable objectives. Naturally, these objectives involve many parameters whose possible values may be assigned by the experts. The aim of this paper is to introduce a hybrid approach combining three optimization techniques, dynamic programming (DP), genetic algorithms and particle swarm optimization (PSO). Our approach integrates the merits of both DP and artificial optimization techniques and it has two characteristic features. Firstly, the proposed algorithm converts fuzzy multiobjective optimization problem to a sequence of a crisp nonlinear programming problems. Secondly, the proposed algorithm uses H-SOA for solving nonlinear programming problem. In which, any complex problem under certain structure can be solved and there is no need for the existence of some properties rather than traditional methods that need some features of the problem such as differentiability and continuity. Finally, with different degree of α we get different α-Pareto optimal solution of the problem. A numerical example is given to illustrate the results developed in this paper.  相似文献   

18.
The nonlinear complementarity problem can be reformulated as a nonlinear programming. For solving nonlinear programming, sequential quadratic programming (SQP) type method is very effective. Moreover, filter method, for its good numerical results, are extensively studied to handle nonlinear programming problems recently. In this paper, a modified quadratic subproblem is proposed. Based on it, we employ filter technique to tackle nonlinear complementarity problem. This method has no demand on initial point. The restoration phase, which is always used in traditional filter method, is not needed. Global convergence results of the proposed algorithm are established under suitable conditions. Some numerical results are reported in this paper.  相似文献   

19.
Over the past few years a number of researchers in mathematical programming became very interested in the method of the Augmented Lagrangian to solve the nonlinear programming problem. The main reason being that the Augmented Lagrangian approach overcomes the ill-conditioning problem and the slow convergence of the penalty methods. The purpose of this paper is to present a new method of solving the nonlinear programming problem, which has similar characteristics to the Augmented Lagrangian method. The original nonlinear programming problem is transformed into the minimization of a leastpth objective function which under certain conditions has the same optimum as the original problem. Convergence and rate of convergence of the new method is also proved. Furthermore numerical results are presented which illustrate the usefulness of the new approach to nonlinear programming.This work was supported by the National Research Council of Canada and by the Department of Combinatorics and Optimization of the University of Waterloo.  相似文献   

20.
《Optimization》2012,61(4):517-530
In the present paper the radius of convergence of a class of locally convergent nonlinear programming algorithms (containing Robinson's and Wilson's methods) applied to a parametric nonlinear programming problem is estimated. A consequence is the numerical feasibility of globalizations of Robinson's and Wilson's methods by means of continuation techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号