首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active-site structures of Cu(II) plastocyanins (PCu's) from a higher plant (parsley), a seedless vascular plant (fern, Dryopteris crassirhizoma), a green alga (Ulva pertusa), and cyanobacteria (Anabaena variabilis and Synechococcus) have been investigated by paramagnetic (1)H NMR spectroscopy. In all cases the spectra are similar, indicating that the structures of the cupric sites, and the spin density distributions onto the ligands, do not differ greatly between the proteins. The active-site structure of PCu has remained unaltered during the evolutionary process. The electron transfer (et) reactivity of these PCu's is compared utilizing the electron self-exchange (ESE) reaction. At moderate ionic strength (0.10 M) the ESE rate constant is dictated by the distribution of charged amino acid residues on the surface of the PCu's. Most higher plant and the seedless vascular plant PCu's, which have a large number of acidic residues close to the hydrophobic patch surrounding the exposed His87 ligand (the proposed recognition patch for the self-exchange process), have ESE rate constants of approximately 10(3) M(-)(1) s(-)(1). Removal of some of these acidic residues, as in the parsley and green algal PCu's, results in more favorable protein-protein association and an ESE rate constant of approximately 10(4) M(-)(1) s(-)(1). Complete removal of the acidic patch, as in the cyanobacterial PCu's, leads to ESE rate constants of approximately 10(5)-10(6) M(-)(1) s(-)(1). The ESE rate constants of the PCu's with an acidic patch also tend toward approximately 10(5)-10(6) M(-)(1) s(-)(1) at higher ionic strength, thus indicating that once the influence of charged residues has been minimized the et capabilities of the PCu's are comparable. The cytochromes and Fe-S proteins, two other classes of redox metalloproteins, also possess ESE rate constants of approximately 10(5)-10(6) M(-)(1) s(-)(1) at high ionic strength. The effect of the protonation of the His87 ligand in PCu(I) on the ESE reactivity has been investigated. When the influence of the acidic patch is minimized, the ESE rate constant decreases at high [H(+)].  相似文献   

2.
We describe the preparation of a molecularly imprinted polymer film (MIP) on top of a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold, where the template cytochrome c (cyt c) participates in direct electron transfer (DET) with the underlying electrode. To enable DET, a non-conductive polymer film is electrodeposited from an aqueous solution of scopoletin and cyt c on to the surface of a gold electrode previously modified with MUA. The electroactive surface concentration of cyt c was 0.5 pmol cm?2. In the absence of the MUA layer, no cyt c DET was observed and the pseudo-peroxidatic activity of the scopoletin-entrapped protein, assessed via oxidation of Ampliflu red in the presence of hydrogen peroxide, was only 30 % of that for the MIP on MUA. This result indicates that electrostatic adsorption of cyt c by the MUA–SAM substantially increases the surface concentration of cyt c during the electrodeposition step, and is a prerequisite for the productive orientation required for DET. After template removal by treatment with sulfuric acid, rebinding of cyt c to the MUA–MIP-modified electrode occurred with an affinity constant of 100,000 mol?1 L, a value three times higher than that determined by use of fluorescence titration for the interaction between scopoletin and cyt c in solution. The DET of cyt c in the presence of myoglobin, lysozyme, and bovine serum albumin (BSA) reveals that the MIP layer suppresses the effect of competing proteins.  相似文献   

3.
The immobilization and electrochemistry of cytochrome c (cyt c) on amino-functionalized mesoporous silica thin films are described. The functionalized silica films with an Im3m cubic phase structure were deposited on conducting ITO substrate by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of Pluronic F127 under acidic conditions. The high specific surface area, large pore size and functional inner surface of mesoporous silica thin films result in a high cyt c loading, and the cyt c immobilization on this silicate framework is stable. After adsorption of cyt c, the ordered cubic structure of mesoporous silica and the redox activity of immobilized cyt c are retained as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM) and cyclic voltammetry. The redox behavior of the cyt c/silica film-modified ITO electrode is a surface-controlled quasi-reversible process for the experimental conditions used in this work and the electron transfer rate constant is calculated is 1.33 s−1. The ITO electrode modified by cyt c/silica film possesses a high stability; even cyt c retains its redox activity following immobilization for several months. Furthermore, the electrocatalytic activities of the modified ITO electrode to hydrogen peroxide and ascorbic acid have been studied. Since these behaviors are quite pronounced, the modified electrode can be used for detection of hydrogen peroxide and ascorbic acid.  相似文献   

4.
Electrostatic interactions and other weak interactions between amino acid side chains on protein surfaces play important roles in molecular recognition, and the mechanism of their intermolecular interactions has gained much interest. We established that charged peptides are useful for investigating the molecular recognition character of proteins and their molecular interaction induced structural changes. Positively charged lysine peptides competitively inhibited electron transfer from reduced cytochrome f (cyt f or cytochrome c (cyt c) to oxidized plastocyanin (PC), due to neutralization of the negatively charged site of PC by formation of PC-lysine peptide complexes. Lysine peptides also inhibited electron transfer from cyt c to cytochrome c peroxidase. Likewise, negatively charged aspartic acid peptides interacted with the positively charged sites of cytfand cyt c, and competitively inhibited electron transfer from reduced cytfor cyt c to oxidized PC and from [Fe(CN)6]4- to oxidized cyt c. Changes in the geometry and a shift to a higher redox potential of the active site Cu of PC on oligolysine binding were detected by spectroscopic and electrochemical measurements, owing to the absence of absorption in the visible region for lysine peptides. Structural and redox potential changes were also observed for cyt f and cyt c by interaction with aspartic acid peptides.  相似文献   

5.
Possible association of photodynamic sensitization by cytochrome b6/f complex (cyt b6/f) via singlet oxygen (1O2) mechanism with photoinhibition damage to photosystem II (PS II) was studied using such subthylakoid preparations as photosystem I (PS I) particles, PS II core complex and cyt b6/f from spinach leaves. Upon exposure to bright light, PS II core complex lost photosynthetic electron transport activity to a certain extent, whose-spectral dependence implied that pheophytin a is likely involved in photoinactivation of PS II core complex in itself. The presence of PS I particles exerted virtually no effect on PS II core photoinactivation. However, the inclusion of cyt b6/f in samples resulted in a marked exacerbation of the photoinactivation, particularly in UV-A and blue light. Such effect of cyt b6/f was suppressed by azide and enhanced by the medium deuteration. Photogeneration of 1O2 from cyt b6/f was confirmed by ESR and spectrophotometry, chemically trapping 1O2. Action spectra for both 1O2 photoproduction and PS II core photoinactivation by cyt b6/f bore a close resemblance to each other, seemingly carrying the absorption characteristics of the Rieske Fe-S protein. A complex deficient in the Rieske protein prepared from intact cyt b6/f showed virtually no generation of 1O2 in light, whereas an efficient photoformation of 1O2 was seen in the Rieske protein preparation. The results suggest that cyt b6/f, rather specifically the Rieske center, may play a prominent role in photoinhibition processes through type II photosensitization in thylakoids.  相似文献   

6.
The electrochemical properties of cytochrome c (cyt c) adsorbed on mixed self-assembled monolayers (SAMs) of 2-mercaptoethanesulfonate (MES)/2-mercaptoethanol (MEL) are compared with those on single-component SAMs of MES, MEL, and mercaptopropionic acid (MPA), using cyclic voltammetry and potential-modulated UV-vis reflectance spectroscopy. The rate constant of electron transfer (ET), k(et), of cyt c adsorbed on the SAM of MPA decreases from 1450 +/- 210 s(-1) at pH 7 to 890 +/- 100 s(-1) at pH 9. In contrast, the value of k(et) of cyt c on the SAM of MES is pH-independent at 100 +/- 15 s(-1). Those facts suggest that a large negative charge density on the SAM surface slows down the ET between cyt c and the electrode. The surface charge density of the SAM affects also the amount of electroactive cyt c, Gamma(e), which decreases from 10.0 +/- 1.0 to 5.3 +/- 1.1 pmol cm(-2) with increasing pH from 7 to 9 on the SAM of MPA. Similarly, the k(et) of cyt c adsorbed on the mixed SAMs of MES/MEL sharply decreases from 900 +/- 300 s(-1) to 110 s(-1) as the surface mole fraction of MES increases beyond 0.5, suggesting the presence of a negative surface charge threshold beyond which the rate of ET of cyt c is dramatically lowered. The decrease in the k(et) on the SAMs at high negative charge densities probably results from the confinement of adsorbed cyt c by the strong electrostatic force to an orientation that is not optimal for the ET reaction.  相似文献   

7.
细胞色素C是吸呼链的1个重要组成部分,位于细胞色素C1和细胞色素a之间,血红素辅基中的铁原子可交替地处于+3或+2氧化态[1]。Smith[2]和Osheroff等[3]对细胞色素C与细胞色素C1及a的结合进行了详细的研究。关于细胞色素C与小分子的相互作用,除Corthesy[4]进行了与ATP的作用,Osheroff[3]进行了与碳酸根的作用外,与其它小分子的作用以及氧化型、还原型之间的相互转化受介质的影响还未见报道。  相似文献   

8.
Apo cytochrome c (apo cyt c) tends to aggregate at alkali pH. Poly(isobutylene-alt-maleic acid) (PIMA) is soluble molecularly, whereas poly(1-tetradecene-alt-maleic acid) (PTMA) forms particles that tend to dissociate by increasing pH and decreasing concentration. Dynamic light scattering and surface plasmon resonance are used to investigate the interactions of PIMA and PTMA with apo cyt c at different pH values to understand the mechanism of the interactions. When the positive or negative charges are in excess, the copolymer-protein complex particles can be stabilized by the charges on the surface. When the ratio of the positive to negative charges is close to the stoichiometric value, precipitation occurs. At pH 11.8, both PTMA and apo cyt c carry negative charges, but the hydrophobic interaction makes them form complexes. A competition exists between the interaction of the copolymer with apo cyt c and the self-aggregation of PTMA or apo cyt c alone. The interaction of PIMA or PTMA with apo cyt c at neutral and alkali pH destroys the aggregation of PTMA or apo cyt c and forms new complex particles.  相似文献   

9.
The effect of charge-inverting modification of single surface lysine residue on the electron transfer (ET) reaction of horse heart cytochrome c (cyt c) is examined for 12 different types of mono-4-chloro-2,5-dinitrobenzoic acid substituted cyt c (mCDNPc) adsorbed on a Au(111) electrode modified with a self-assembled monolayer (SAM) of 7-mercapto-heptanoic acid (MHA). A negative shift in the redox potential by 10-35 mV as compared to that of native cyt c and a monolayer coverage in the range of 13-17 pmol cm(-2) are observed for electroactive mCDNPc's. The magnitude of the decrease in the ET rate constant (k(et)) of mCDNPc's compared with that of native cyt c depends on the position of the CDNP substitution. For mCDNPc's in which the modified lysine residue is outside of the interaction domain of cyt c with the SAM, the ratio of the k(et) of mCDNPc to that of native cyt c is correlated to the change in the dipole moment vector of cyt c due to the CDNP modification. This correlation suggests that the dipole moment of cyt c determines its orientation of adsorption on the SAM of MHA and significantly affects the rate of the ET. The CDNP modification of lysine residues at the interaction domain significantly decreases the rate, demonstrating the importance of the local charge environment in determining the rate of ET.  相似文献   

10.
This work demonstrates a remarkable enhancement in the peroxidase activity of mitochondrial membrane protein cytochrome c (cyt c) by perturbing its tertiary structure in the presence of surface‐functionalised gold nanoparticles (GNPs) within cetyltrimethylammonium bromide (CTAB) reverse micelles. The loss in the tertiary structure of cyt c exposes its heme moiety (which is buried inside in the native globular form), which provides greater substrate (pyrogallol and H2O2) accessibility to the reactive heme residue. The surfactant shell of the CTAB reverse micelle in the presence of co‐surfactant (n‐hexanol) exerted higher crowding effects on the interfacially bound cyt c than similar anionic systems. The congested interface led to protein unfolding, which resulted in a 56‐fold higher peroxidase activity of cyt c than that in water. Further perturbation in the protein’s structure was achieved by doping amphiphile‐capped GNPs with varying hydrophobicities in the water pool of the reverse micelles. The hydrophobic moiety on the surface of the GNPs was directed towards the interfacial region, which induced major steric strain at the interface. Consequently, interaction of the protein with the hydrophobic domain of the amphiphile further disrupted its tertiary structure, which led to better opening up of the heme residue and, thereby, superior activity of the cyt c. The cyt c activity in the reverse micelles proportionately enhanced with an increase in the hydrophobicity of the GNP‐capping amphiphiles. A rigid cholesterol moiety as the hydrophobic end group of the GNP strikingly improved the cyt c activity by up to 200‐fold relative to that found in aqueous buffer. Fluorescence studies with both a tryptophan residue (Trp59) of the native protein and the sodium salt of fluorescein delineated the crucial role of the hydrophobicity of the GNP‐capping amphiphiles in improving the peroxidase activity of cyt c by unfolding its tertiary structure within the reverse micelles.  相似文献   

11.
Lipid membranes are well recognized ligands that bind peripheral and integral proteins in a specific manner and regulate their function. Cytochrome c (cyt c) is one of the partner peripheral protein that binds to the lipid membranes via electrostatic and hydrophobic interactions. In this study, asymmetrical flow field-flow fractionation (AsFlFFF) was used to compare the interactions of cyt c with the acidic phospholipid 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG), oleic acid (OA), and sodium dodecyl sulfate (SDS). The influence of pH and the cyt c–lipid molar mass ratios were evaluated by monitoring the diffusion coefficients and particle diameter distributions obtained for the free and lipid-bound protein. The hydrodynamic particle diameter of cyt c (pI 10) was 4.1 nm at pH 11.4 and around 4.2 nm at pH 7.0 and 8.0. Standard molar mass marker proteins were used for calibration to obtain the molar masses of free cyt c and its complexes with lipids. AsFlFFF revealed the binding of cyt c to DMPG and to OA to be mainly electrostatic. In the absence of electrostatic interactions, minor complex formation occurred, possibly due to the extended lipid anchorage involving the hydrophobic cavity of cyt c and the hydrocarbon chains of DMPG or SDS. The possibility of the formation of the molten globule state of cyt c, induced by the interaction between cyt c and lipids, is discussed.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

12.
《Chemphyschem》2005,6(8):1613-1621
The orientation and conformation of adsorbed cytochrome c (cyt c) at the interface between an electrode modified with colloidal Au and a solution were studied by electrochemical, spectroscopic, and spectroelectrochemical techniques. The results indicate that the colloidal Au monolayer formed via preformation of an organic self‐assembled monolayer (SAM) can increase the electronic coupling between the SAM and cyt c in the same manner as bifunctional molecular bridges, one functional group of which is bound to the electrode surface while the other interacts with the protein surface. The approach of cyt c to the modified electrode/solution interface can be assisted by strong interactions of the intrinsic charge of colloidal particles with cyt c, while the heme pocket remains almost unchanged due to the screening effect of the negatively charged field created by the intrinsic charge. The conformational changes of cyt c induced by its adsorption at a bare glassy carbon electrode/solution interface and the effect of the electric field on the ligation state of the heme can be avoided at the colloidal‐Au‐modified electrode/solution interface. Finally, a possible model for the adsorption orientation of cyt c at the colloidal‐Au‐modified electrode/solution interface is proposed.  相似文献   

13.
Sulfite oxidase (SO) is an enzyme catalyzing the terminal step of the metabolism of sulfur-containing amino acids that is essential for almost all living organisms. The catalytic activity of SO in vertebrates strongly depends on the efficiency of the intramolecular electron transfer (IET) between the catalytic Moco domain and the cytochrome b5 (cyt b5) domain. The IET process is assumed to be mediated by large domain motions of the cyt b5 domains within the enzyme. Thus, the interaction of SO with charged surfaces may affect the mobility of the cyt b5 domain required for IET and consequently hinder SO activation. In this study, we present a molecular dynamics approach to investigating the ionic strength dependence of the initial surface adsorption of SO in two different conformations-the crystallographic structure and the model structure for an activated SO-onto mixed amino- and hydroxyl-terminated SAMs. The results show for both conformations at low ionic strengths a strong adsorption of the cyt b5 units onto the SAM, which inhibits the domain motion event required for IET. Under higher ion concentrations, however, the interaction with the surface is weakened by the negatively charged ions acting as a buffer and competing in adsorption with the cathodic cyt b5 domains. This competition prevents the immobilization of the cytochrome b5 units onto the surface, allowing the intramolecular domain motions favoring IET. Our predictions support the interpretation of recent experimental spectroelectrochemical studies on SO.  相似文献   

14.
Sun Z  Hu J  Lu Y  Li Q 《The Analyst》2003,128(7):930-934
The electrochemical behavior of cytochrome c (cyt c) and its interaction with DNA at a Co/glassy carbon (GC) ion implantation modified electrode were studied by linear sweep and cyclic voltammetry. In 0.005 mol dm(-3) Tris-0.05 mol dm(-3) NaCl buffer solution (pH = 7.10), a sensitive reduction derivative peak of cyt c was obtained by linear sweep voltammetry. The peak potential was 0.032 V (SCE). The peak current was proportional to the concentration of cyt c. The electrode process was quasi-reversible with adsorption. The electrode reaction rate constant k and the electron transfer coefficient a of cyt c were 4.42 s(-1) and 0.47, respectively. AES and XPS experiments showed that Co was implanted into the surface of the GC electrode (GCE). The implanted Co formed Co-C, which catalyzed the reduction of cyt c. The reaction of DNA with cyt c led to an electrochemically active complex, which resulted in an increase in the reduction current of cyt c. After adding DNA into the solution containing cyt c, the electrode process was still quasi-reversible with adsorption.  相似文献   

15.
Cytochrome (cyt) c transports electrons from Complex III to Complex IV in mitochondria. Cyt c is ordinarily anchored to the mitochondrial membrane through interaction with cardiolipin (CL), however its release into the cytosol initiates apoptosis. The cyt c interaction site with CL‐containing bicelles was characterized by NMR spectroscopy. Chemical shift perturbations in cyt c signals upon interaction with bicelles revealed that a relatively wide region, which includes the A‐site, the CXXCH motif, and the N‐ and C‐terminal helices, and contains multiple Lys residues, interacts cooperatively with CL. The specific cyt c–CL interaction increased with increasing CL molecules in the bicelles. The location of the cyt c interaction site for CL was similar to those for Complex III and Complex IV, thus indicating that cyt c recognizes lipids and partner proteins in a similar way. In addition to elucidating the cyt c membrane‐binding site, these results provide insight into the dynamic aspect of cyt c interactions in mitochondria.  相似文献   

16.
A series of non-porous, microspherical zirconia-based stationary phases with surface bound cationic functions have been introduced and evaluated in ion exchange chromatography of proteins and small acidic solutes. Different surface modification procedures were evaluated in the covalent attachment of weak, strong or hybrid anion exchange moieties on the surface of non-porous zirconia micropar-ticles. N,N-Diethylaminoethanol (DEAE) was used as the weak anion exchange ligand while glycidyltrimethylammonium chloride, which was covalently attached to poly(vinyl alcohol) layer (PVAN) on the zirconia surface, constituted the strong anion exchange moiety. Partially quaternarized poly(ethyleneimine) hydroxyethylated (PEI) was used as the hybrid type of anion exchange coating. DEAE-zir-conia microparticles acted as purely cation exchange stationary phases toward basic proteins indicating the predominance of electron donor-electron acceptor interaction (EDA) with surface exposed zirconium sites as well as cation exchange mechanism via electrostatic interaction with unreacted and unshielded hydroxyl groups. PVAN-zirconia stationary phase exhibited anion exchange chromatographic properties toward acidic proteins, but EDA interaction has stayed as an important contributor to solute retention despite the presence of a relatively thick layer of poly(vinyl alcohol) on the surface of the zirconia particles. The modification of zirconia surface with partially quaternarized PEI proved to be the most effective approach to minimize Lewis acidic metallic properties of the support. In fact, PEI-zirconia stationary phase operated as an anion exchanger toward acidic proteins and other small acidic solutes.  相似文献   

17.
In this study, we examined the adsorption of cytochrome c (cyt c) on monolayers and liposomes formed from (i) pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), or cardiolipin (CL) and on (ii) the more thermodynamically stable binary mixtures of POPE/CL (0.8:0.2 mol/mol) and POPC/CL (0.6:0.4 mol/mol). Constant surface pressure experiments showed that the maximum and minimum interactions occurred in the pure CL (anionic phospholipid) and the pure POPE (zwitterion) monolayers, respectively. Observation by atomic force microscopy (AFM) of the images of Langmuir-Blodgett (LB) films extracted at 30 mN m-1 suggests that the different interactions of cyt c with POPE/CL and the POPC/CL monolayers could be due to lateral phase separation occurring in the POPE/CL mixture. The competition between 8-anilino-1-naphthalene sulfonate (ANS) and cyt c for the same binding sites in liposomes that have identical nominal compositions with respect to those of the monolayers was used to obtain binding parameters. In agreement with the monolayer experiments, the most binding was observed in POPE/CL liposomes. All of our observations strongly support the existence of selective adsorption of cyt c on CL, which is modulated differently by different neutral phospholipids (POPE and POPC).  相似文献   

18.
The tetraheme cytochrome c(554) (cyt c(554)) from Nitrosomonas europaea is believed to function as an electron-transfer protein from hydroxylamine oxidoreductase (HAO). We show here that cyt c(554) also has significant NO reductase activity. The protein contains one high-spin and three low-spin c-type hemes. HAO catalyzed reduction of the cyt c(554), ligand binding, intermolecular electron transfer, and kinetics of NO reduction by cyt c(554) have been investigated. We detect the formation of a NO-bound ferrous heme species in cyt c(554) by EPR and M?ssbauer spectroscopies during the HAO catalyzed oxidation of hydroxylamine, indicating that N-oxide intermediates produced from HAO readily bind to cyt c(554). In the half-reduced state of cyt c(554), we detect a spin interaction between the [FeNO](7) state of heme 2 and the low-spin ferric state of heme 4. We find that ferrous cyt c(554) will reduce NO at a rate greater than 16 s(-1), which is comparable to rates of other known NO reductases. Carbon monoxide or nitrite are shown not to bind to the reduced protein, and previous results indicate the reactions with O(2) are slow and that a variety of ligands will not bind in the oxidized state. Thus, the enzymatic site is highly selective for NO. The NO reductase activity of cyt c(554) may be important during ammonia oxidation in N. europaea at low oxygen concentrations to detoxify NO produced by reduction of nitrite or incomplete oxidation of hydroxylamine.  相似文献   

19.
The adsorption of 2-chloropyridine on SiO(2), TiO(2), ZrO(2), SiO(2)-Al(2)O(3) and H-mordenite has been studied by IR spectroscopy. The different modes of interaction with oxide surfaces, i.e. hydrogen-bonding and adsorption at Br?nsted or Lewis acid sites, was modelled by ab initio calculations at the B3LYP/DZ+(d) level. Adsorption on SiO(2) results in hydrogen bonding to surface hydroxyl groups, whereas the spectra obtained following adsorption on TiO(2) and ZrO(2) display evidence for electron transfer at Lewis acidic surface sites. Protonation of 2-chloropyridine at Br?nsted acidic sites was detected only for adsorption on SiO(2)-Al(2)O(3) and H-mordenite, indicating the presence of Br?nsted acidic sites on these oxide surfaces with pK(a) values 相似文献   

20.
The effect of oxygen concentration on both absorption and chlorophyll fluorescence spectra was investigated in isolated pea thylakoids at weak actinic light under the steady-state conditions. Upon the rise of oxygen concentration from anaerobiosis up to 412 microM a gradual absorbance increase around both 437 and 670 nm was observed, suggesting the disaggregation of LHCII and destacking of thylakoids. Simultaneously, an increase in oxygen concentration resulted in a decline in the Chl fluorescence at 680 nm to about 60% of the initial value. The plot of normalized Chl fluorescence quenching, F(-O(2))/F(+O(2)), showed discontinuity above 275 microM O(2), revealing two phases of quenching, at both lower and higher oxygen concentrations. The inhibition of photosystem II by DCMU or atrazine as well as that of cyt b(6)f by myxothiazol attenuated the oxygen-induced quenching events observed above 275 microM O(2), but did not modify the first phase of oxygen action. These data imply that the oxygen mediated Chl fluorescence quenching is partially independent on non-cyclic electron flow. The second phase of oxygen-induced decline in Chl fluorescence is diminished in thylakoids with poisoned PSII and cyt b(6)f activities and treated with rotenone or N-ethylmaleimide to inhibit NAD(P)H-plastoquinone dehydrogenase. The data suggest that under weak light and high oxygen concentration the Chl fluorescence quenching results from interactions between oxygen and PSI, cyt b(6)f and Ndh. On the contrary, inhibition of non-cyclic electron flow by antimycin A or uncoupling of thylakoids by carbonyl cyanide m-chlorophenyl hydrazone did not modify the steady-state oxygen effect on Chl fluorescence quenching. The addition of NADH protected thylakoids against oxygen-induced Chl fluorescence quenching, whereas in the presence of exogenic duroquinone the decrease in Chl fluorescence to one half of the initial level did not result from the oxygen effect, probably due to oxygen action as a weak electron acceptor from PQ pool and an insufficient non-photochemical quencher. The data indicate that mechanism of oxygen-induced Chl fluorescence quenching depends significantly on oxygen concentration and is related to both structural rearrangement of thylakoids and the direct oxygen reduction by photosynthetic complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号