首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We extend the applicability of Newton’s method for approximating a solution of a nonlinear operator equation in a Banach space setting using nondiscrete mathematical induction concept introduced by Potra and Ptak. We obtain new sufficient convergence conditions for Newton’s method using Lipschitz and center-Lipschitz conditions instead of only the Lipschitz condition used in F.A.Potra, V.Ptak, Sharp error bounds for Newton’s process, Numer. Math., 34 (1980), 63–72, and F.A.Potra, V.Ptak, Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston, 1984. Under the same computational cost as before, we provide: weaker sufficient convergence conditions; tighter error estimates on the distances involved and more precise information on the location of the solution. Numerical examples are also provided in this study.  相似文献   

2.
The Kantorovich theorem is a fundamental tool in nonlinear analysis for proving the existence and uniqueness of solutions of nonlinear equations arising in various fields. This theorem was weakened recently by Argyros who used a combination of Lipschitz and center-Lipschitz conditions in place of the Lipschitz conditions of the Kantorovich theorem. In the present paper we prove a weak Kantorovich-type theorem that gives the same conclusions as the previous two results under weaker conditions. Illustrative examples are provided in the paper.  相似文献   

3.
The famous Newton-Kantorovich hypothesis (Kantorovich and Akilov, 1982 [3], Argyros, 2007 [2], Argyros and Hilout, 2009 [7]) has been used for a long time as a sufficient condition for the convergence of Newton’s method to a solution of an equation in connection with the Lipschitz continuity of the Fréchet-derivative of the operator involved. Here, using Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we show that the Newton-Kantorovich hypothesis can be weakened, under the same information. Moreover, the error bounds are tighter than the corresponding ones given by the dominating Newton-Kantorovich theorem (Argyros, 1998 [1]; [2] and [7]; Ezquerro and Hernández, 2002 [11]; [3]; Proinov 2009, 2010 [16] and [17]).Numerical examples including a nonlinear integral equation of Chandrasekhar-type (Chandrasekhar, 1960 [9]), as well as a two boundary value problem with a Green’s kernel (Argyros, 2007 [2]) are also provided in this study.  相似文献   

4.
We present a Kantorovich-type semilocal convergence analysis of the Newton–Josephy method for solving a certain class of variational inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291–1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer error bounds on the distances involved, and an at least as precise information on the location of the solution.  相似文献   

5.
We use Lipschitz and center-Lipschitz conditions to provide an improved local convergence analysis for a certain class of iterative methods with cubic order of convergence. It turns out that under the same computational cost as before, we obtain a larger radius of convergence and tighter error bounds. Numerical examples are also provided in this study.  相似文献   

6.
Local as well as semilocal convergence theorems for Newton-like methods have been given by us and other authors [1]—[8] using various Lipschitz type conditions on the operators involved. Here we relax these conditions by introducing weaker center-Lipschitz type conditions. This way we can cover a wider range of problems than before in the semilocal case, where as in the local case a larger convergence radius can be obtained in some cases.  相似文献   

7.
We present a Kantorovich-type semilocal convergence analysis of the Newton–Josephy method for solving a certain class of variational inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291–1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer error bounds on the distances involved, and an at least as precise information on the location of the solution.  相似文献   

8.
We study the influence of a center Lipschitz condition for the first derivative of the operator involved when the solution of a nonlinear equation is approximated by Newton’s method in Banach spaces. As a consequence, we see that the domain of parameters associated to the Newton–Kantorovich theorem is enlarged.  相似文献   

9.
Extension of concepts and techniques of linear spaces for the Riemannian setting has been frequently attempted. One reason for the extension of such techniques is the possibility to transform some Euclidean non-convex or quasi-convex problems into Riemannian convex problems. In this paper, a version of Kantorovich’s theorem on Newton’s method for finding a singularity of differentiable vector fields defined on a complete Riemannian manifold is presented. In the presented analysis, the classical Lipschitz condition is relaxed using a general majorant function, which enables us to not only establish the existence and uniqueness of the solution but also unify earlier results related to Newton’s method. Moreover, a ball is prescribed around the points satisfying Kantorovich’s assumptions and convergence of the method is ensured for any starting point within this ball. In addition, some bounds for the Q-quadratic convergence of the method, which depends on the majorant function, are obtained.  相似文献   

10.
将Kantorovich定理推广到变分不等式,从而使得Newton迭代的收敛性、问题解的存在唯一性均可通过初始点处的可计算的条件来判断.  相似文献   

11.
The estimates of the radii of convergence balls of the Newton method and uniqueness balls of zeroes of vector fields on the Riemannian manifolds are given under the assumption that the covariant derivatives of the vector fields satisfy some kind of general Lipschitz conditions. Some classical results such as the Kantorovich's type theorem and the Smale's γ-theory are extended.  相似文献   

12.
We present a weaker convergence analysis of Newton’s method than in Kantorovich and Akilov (1964), Meyer (1987), Potra and Ptak (1984), Rheinboldt (1978), Traub (1964) on a generalized Banach space setting to approximate a locally unique zero of an operator. This way we extend the applicability of Newton’s method. Moreover, we obtain under the same conditions in the semilocal case weaker sufficient convergence criteria; tighter error bounds on the distances involved and an at least as precise information on the location of the solution. In the local case we obtain a larger radius of convergence and higher error estimates on the distances involved. Numerical examples illustrate the theoretical results.  相似文献   

13.
A Newton–Kantorovich convergence theorem of a modified Newton’s method having third order convergence is established under the gamma-condition in a Banach space to solve nonlinear equations. It is assumed that the nonlinear operator is twice Fréchet differentiable and satisfies the gamma-condition. We also present the error estimate to demonstrate the efficiency of our approach. A comparison of our numerical results with those obtained by other Newton–Kantorovich convergence theorems shows high accuracy of our results.  相似文献   

14.
Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equations. These methods however require an evaluation of the second Fréchet-derivative at each step which means a number of function evaluations proportional to the cube of the dimension of the space. To reduce the computational cost we replace the second Fréchet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient conditions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton’s method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.  相似文献   

15.
Building on the method of Kantorovich majorants, we give convergence results and error estimates for the two-step Newton method for the approximate solution of a nonlinear operator equation.  相似文献   

16.
We propose a generalized Newton method for solving the system of nonlinear equations with linear complementarity constraints in the implicit or semi-implicit time-stepping scheme for differential linear complementarity systems (DLCS). We choose a specific solution from the solution set of the linear complementarity constraints to define a locally Lipschitz continuous right-hand-side function in the differential equation. Moreover, we present a simple formula to compute an element in the Clarke generalized Jacobian of the solution function. We show that the implicit or semi-implicit time-stepping scheme using the generalized Newton method can be applied to a class of DLCS including the nondegenerate matrix DLCS and hidden Z-matrix DLCS, and has a superlinear convergence rate. To illustrate our approach, we show that choosing the least-element solution from the solution set of the Z-matrix linear complementarity constraints can define a Lipschitz continuous right-hand-side function with a computable Lipschitz constant. The Lipschitz constant helps us to choose the step size of the time-stepping scheme and guarantee the convergence.  相似文献   

17.
Following an idea similar to that given by Dennis and Schnabel (1996) in [2], we prove a local convergence result for Newton’s method under generalized conditions of Kantorovich type.  相似文献   

18.
The convergence set for Newton’s method is small in general using Lipschitz-type conditions. A center-Lipschitz-type condition is used to determine a subset of the convergence set containing the Newton iterates. The rest of the Lipschitz parameters and functions are then defined based on this subset instead of the usual convergence set. This way the resulting parameters and functions are more accurate than in earlier works leading to weaker sufficient semi-local convergence criteria. The novelty of the paper lies in the observation that the new Lipschitz-type functions are special cases of the ones given in earlier works. Therefore, no additional computational effort is required to obtain the new results. The results are applied to solve Hammerstein nonlinear integral equations of Chandrasekhar type in cases not covered by earlier works.  相似文献   

19.
We provide two types of semilocal convergence theorems for approximating a solution of an equation in a Banach space setting using an inexact Newton method [I.K. Argyros, Relation between forcing sequences and inexact Newton iterates in Banach spaces, Computing 63 (2) (1999) 134–144; I.K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Fréchet-derivative, Comput. Appl. Math. 37 (7) (1999) 109–115; I.K. Argyros, Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77–80; I.K. Argyros, Local convergence of inexact Newton-like iterative methods and applications, Comput. Math. Appl. 39 (2000) 69–75; I.K. Argyros, Computational Theory of Iterative Methods, in: C.K. Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242]. By using more precise majorizing sequences than before [X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242; Z.D. Huang, On the convergence of inexact Newton method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393–396; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; X.H. Wang, Convergence on the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552–555; T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3) (1984) 583–590], we provide (under the same computational cost) under the same or weaker hypotheses: finer error bounds on the distances involved; an at least as precise information on the location of the solution. Moreover if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained.  相似文献   

20.
陈为雄 《计算数学》1984,6(4):388-395
§1.前言 设X和Y是Banach空间,p(x)是定义在区域G X上并取值于Y的非线性算子。假定p(x)有Frechet导算子p’(x),为了近似解算子方程 p(x)=0, (1)研究了如下的迭代程序: x_(n 1)=x_n-A_np(x_n), A_(n 1)=2A_n-A_np(x_(n 1)A_n,(2)这里x_0∈G和A_0∈(Y→X)都是初始近似,其中x_0是方程(1)的近似解,而A_0则是p(x_0)的近似过算子。[1]在一些条件下证明了程序(2)收敛于方程(1)的解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号