首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary. It is well-known the loss of accuracy when a Runge–Kutta method is used together with the method of lines for the full discretization of an initial boundary value problem. We show that this phenomenon, called order reduction, is caused by wrong boundary values in intermediate stages. With a right choice, the order reduction can be avoided and the optimal order of convergence in time is achieved. We prove this fact for time discretizations of abstract initial boundary value problems based on implicit Runge–Kutta methods. Moreover, we apply these results to the full discretization of parabolic problems by means of Galerkin finite element techniques. We present some numerical examples in order to confirm that the optimal order is actually achieved. Received July 10, 2000 / Revised version received March 13, 2001 / Published online October 17, 2001  相似文献   

2.
In this paper we develop a technique for avoiding the order reduction caused by nonconstant boundary conditions in the methods called splitting, alternating direction or, more generally, fractional step methods. Such methods can be viewed as the combination of a semidiscrete in time procedure with a special type of additive Runge-Kutta method, which is called the fractional step Runge-Kutta method, and a standard space discretization which can be of type finite differences, finite elements or spectral methods among others. Spectral methods have been chosen here to complete the analysis of convergence of a totally discrete scheme of this type of improved fractionary steps. The numerical experiences performed also show the increase of accuracy that this technique provides.

  相似文献   


3.
In this work we consider interpolants for Nyström methods, i.e., methods for solving second order initial value problems. We give a short introduction to the theory behind the discrete methods, and extend some of the work to continuous, explicit Nyström methods. Interpolants for continuous, explicit Runge-Kutta methods have been intensively studied by several authors, but there has not been much effort devoted to continuous Nyström methods. We therefore extend some of the work by Owren.  相似文献   

4.
We develop and analyse a new spectral-Galerkin method for the numerical solution of linear, second order differential equations with homogeneous Neumann boundary conditions. The basis functions for this method are the eigenfunctions of the Laplace operator subject to these boundary conditions. Due to this property this method has a number of beneficial features, including an condition number and the availability of an optimal, diagonal preconditioner. This method offers a uniform convergence rate of , however we show that by the inclusion of an additional 2M basis functions, this figure can be increased to for any positive integer M.   相似文献   

5.
A 6 stage Runge-Kutta method is derived with the property that its order is 5 when used to solve a scalar differential equation but only 4 when used to solve a general system of differential equations. The existence of such a method underlines the necessity of carrying out theoretical analyses in a vector valued setting rather than in a one-dimensional setting as in the work of Kutta and some more recent authors.This research was supported by the New Zealand Foundation for Research, Science and Technology  相似文献   

6.
This paper is devoted to initial boundary value problems for quasi-linear symmetric hyperbolic systems in a domain with characteristic boundary. It extends the theory on linear symmetric hyperbolic systems established by Friedrichs to the nonlinear case. The concept on regular characteristics and dissipative boundary conditions are given for quasilinear hyperbolic systems. Under some assumptions, an existence theorem for such initial boundary value problems is obtained. The theorem can also be applied to the Euler system of compressible flow. __________ Translated from Chinese Annals of Mathematics, Ser. A, 1982, 3(2): 223–232  相似文献   

7.
8.
9.
This article considers the extension of well‐known discontinuous Galerkin (DG) finite element formulations to elliptic problems with periodic boundary conditions. Such problems routinely appear in a number of applications, particularly in homogenization of composite materials. We propose an approach in which the periodicity constraint is incorporated weakly in the variational formulation of the problem. Both H1 and L2 error estimates are presented. A numerical example confirming theoretical estimates is shown. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007  相似文献   

10.
In this paper, symmetric multistep Obrechkoff methods of orders 8 and 12, involving a parameter p to solve a special class of second order initial value problems in which the first order derivative does not appear explicitly, are discussed. It is shown that the methods have zero phase-lag when p is chosen as 2π times the frequency of the given initial value problem.  相似文献   

11.
For the parallel integration of stiff initial value problems (IVPs) three main approaches can be distinguished: approaches based on parallelism across the problem, on parallelism across the method and on parallelism across the steps. The first type of parallelism does not require special integration methods can be exploited within any available IVP solver. The methodparallel approach received some attention in the case of Runge-Kutta based methods. For these methods, the required number of processors is roughly half the order of the generating Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The step-parallel iteraction process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to solve the four-stage Radau IIA corrector used in our experiments within a few effective iterations per step and to achieve speed-up factors up to 10 with respect to the best sequential codes.The research reported in this paper was partly supported by the Technology Foundation (STW) in the Netherlands.  相似文献   

12.
For the parallel integration of nonstiff initial value problems (IVPs), three main approaches can be distinguished: approaches based on “parallelism across the problem”, on “parallelism across the method” and on “parallelism across the steps”. The first type of parallelism does not require special integration methods and can be exploited within any available IVP solver. The method-parallelism approach received much attention, particularly within the class of explicit Runge-Kutta methods originating from fixed point iteration of implicit Runge-Kutta methods of Gaussian type. The construction and implementation on a parallel machine of such methods is extremely simple. Since the computational work per processor is modest with respect to the number of data to be exchanged between the various processors, this type of parallelism is most suitable for shared memory systems. The required number of processors is roughly half the order of the generating Runge-Kutta method and the speed-up with respect to a good sequential IVP solver is about a factor 2. The third type of parallelism (step-parallelism) can be achieved in any IVP solver based on predictor-corrector iteration and requires the processors to communicate after each full iteration. If the iterations have sufficient computational volume, then the step-parallel approach may be suitable for implementation on distributed memory systems. Most step-parallel methods proposed so far employ a large number of processors, but lack the property of robustness, due to a poor convergence behaviour in the iteration process. Hence, the effective speed-up is rather poor. The dynamic step-parallel iteration process proposed in the present paper is less massively parallel, but turns out to be sufficiently robust to achieve speed-up factors up to 15.  相似文献   

13.
In this paper, the variational iteration method is used to solve a system of fourth order boundary value problems associated with obstacle, unilateral and contact problems. Numerical solution obtained by the method is of high accuracy. Moreover, the higher-order derivatives of numerical solution can also approximate the higher-order derivatives of exact solution well. Five examples compared with those considered by Siddiqi and Akram [S.S. Siddiqi, G. Akram, Numerical solution of a system of fourth order boundary value problems using cubic non-polynomial spline method, Applied Mathematics and Computation 190 (2007) 652–661] show that the method is more efficient.  相似文献   

14.
In this paper, we point out the differences between a class of fractional difference equations and the integer-order ones. We show that under the same boundary conditions, the problem of the fractional order is nonresonant, while the integer-order one is resonant. Then we analyse the discrete fractional boundary value problem in detail. Then the uniqueness and multiplicity of the solutions for the discrete fractional boundary value problem are obtained by two new tools established in 2012, respectively.  相似文献   

15.
16.
In this paper, we obtain a sequence of approximate solution converging uniformly to the exact solution of a class of fourth‐order nonlinear boundary value problems. Its exact solution is represented in the form of series in the reproducing kernel space. The n‐term approximation un(x) is proved to converge to the exact solution u(x). Moreover, the derivatives of un(x) are also convergent to the derivatives of u(x). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The existence of solutions of periodic boundary value problems for second order impulsive integro-differential equations of Volterra type is investigated. By using the method of upper and lower solutions, it is proved that the problem in whi h impulses occur at fixed times has a solution. Some impulsive integro-differential inequalities related to such problem are also established.  相似文献   

18.
Using the well known properties of thes-stage implicit Runge-Kutta methods for first order differential equations, single step methods of arbitrary order can be obtained for the direct integration of the general second order initial value problemsy=f(x, y, y),y(x o)=y o,y(x o)=y o. These methods when applied to the test equationy+2y+ 2 y=0, ,0, +>0, are superstable with the exception of a finite number of isolated values ofh. These methods can be successfully used for solving singular perturbation problems for which f/y and/or f/y are negative and large. Numerical results demonstrate the efficiency of these methods.  相似文献   

19.
20.
研究四阶带有阻尼项的非线性波动方程的解的初边值问题,利用位势井方法,证明了当初值满足一定条件时解发生爆破.将有关该系统爆破性质的研究结果一般化,通过证明得到了该系统较好的性质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号