首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Valid inequalities for the knapsack polytope have proven to be very useful in exact algorithms for mixed-integer linear programming. In this paper, we focus on the knapsack cover inequalities, introduced in 2000 by Carr and co-authors. In general, these inequalities can be rather weak. To strengthen them, we use lifting. Since exact lifting can be time-consuming, we present two fast approximate lifting procedures. The first procedure is based on mixed-integer rounding, whereas the second uses superadditivity.  相似文献   

2.
A branch-and-cut mixed integer programming system, called bcopt, is described, incorporating most of the valid inequalities that have been used or suggested for such systems, namely lifted 0-1 knapsack inequalities, 0-1 gub knapsack and integer knapsack inequalities, flowcover and continuous knapsack inequalities, path inequalities for fixed charge network flow structure and Gomory mixed integer cuts. The principal development is a set of interface routines allowing these cut routines to generate cuts for new subsets or aggregations of constraints. The system is built using the XPRESS Optimisation Subroutine Library (XOSL) which includes a cut manager that handles the tree and cut management, so that the user only essentially needs to develop the cut separation routines. Results for the MIPLIB3.0 library are presented - 37 of the instances are solved very easily, optimal or near optimal solution are produced for 18 other instances, and of the 4 remaining instances, 3 have 0, +1, -1 matrices for which bcopt contains no special features. Received May 11, 1997 / Revised version received March 8, 1999?Published online June 11, 1999  相似文献   

3.
 A cardinality constrained knapsack problem is a continuous knapsack problem in which no more than a specified number of nonnegative variables are allowed to be positive. This structure occurs, for example, in areas such as finance, location, and scheduling. Traditionally, cardinality constraints are modeled by introducing auxiliary 0-1 variables and additional constraints that relate the continuous and the 0-1 variables. We use an alternative approach, in which we keep in the model only the continuous variables, and we enforce the cardinality constraint through a specialized branching scheme and the use of strong inequalities valid for the convex hull of the feasible set in the space of the continuous variables. To derive the valid inequalities, we extend the concepts of cover and cover inequality, commonly used in 0-1 programming, to this class of problems, and we show how cover inequalities can be lifted to derive facet-defining inequalities. We present three families of non-trivial facet-defining inequalities that are lifted cover inequalities. Finally, we report computational results that demonstrate the effectiveness of lifted cover inequalities and the superiority of the approach of not introducing auxiliary 0-1 variables over the traditional MIP approach for this class of problems. Received: March 13, 2003 Published online: April 10, 2003 Key Words. mixed-integer programming – knapsack problem – cardinality constrained programming – branch-and-cut  相似文献   

4.
This paper presents a new class of valid inequalities for the single-item capacitated lot sizing problem with step-wise production costs (LS-SW). Constant sized batch production is carried out with a limited production capacity in order to satisfy the customer demand over a finite horizon. A new class of valid inequalities we call mixed flow cover, is derived from the existing integer flow cover inequalities by a lifting procedure. The lifting coefficients are sequence independent when the batch sizes (V) and the production capacities (P) are constant and when V divides P. When the restriction of the divisibility is removed, the lifting coefficients are shown to be sequence independent. We identify some cases where the mixed flow cover inequalities are facet defining. We propose a cutting plane algorithm for different classes of valid inequalities introduced in the paper. The exact separation algorithm proposed for the constant capacitated case runs in polynomial time. Computational results show the efficiency of the new class mixed flow cover compared to the existing methods.  相似文献   

5.
This paper deals with the 0/1 knapsack polytope. In particular, we introduce the class ofweight inequalities. This class of inequalities is needed to describe the knapsack polyhedron when the weights of the items lie in certain intervals. A generalization of weight inequalities yields the so-called “weight-reduction principle” and the class of extended weight inequalities. The latter class of inequalities includes minimal cover and (l,k)-configuration inequalities. The properties of lifted minimal cover inequalities are extended to this general class of inequalities.  相似文献   

6.
The 0-1 Knapsack problem with a single continuous variable   总被引:5,自引:0,他引:5  
Specifically we investigate the polyhedral structure of the knapsack problem with a single continuous variable, called the mixed 0-1 knapsack problem. First different classes of facet-defining inequalities are derived based on restriction and lifting. The order of lifting, particularly of the continuous variable, plays an important role. Secondly we show that the flow cover inequalities derived for the single node flow set, consisting of arc flows into and out of a single node with binary variable lower and upper bounds on each arc, can be obtained from valid inequalities for the mixed 0-1 knapsack problem. Thus the separation heuristic we derive for mixed knapsack sets can also be used to derive cuts for more general mixed 0-1 constraints. Initial computational results on a variety of problems are presented. Received May 22, 1997 / Revised version received December 22, 1997 Published online November 24, 1998  相似文献   

7.
On the directed hop-constrained shortest path problem   总被引:1,自引:0,他引:1  
  相似文献   

8.
We study the mixed 0-1 knapsack polytope, which is defined by a single knapsack constraint that contains 0-1 and bounded continuous variables, through the lifting of continuous variables fixed at their upper bounds. We introduce the concept of a superlinear inequality and show that, in this case, lifting is significantly simpler than for general inequalities. We use the superlinearity theory, together with the traditional lifting of 0-1 variables, to describe families of facets of the mixed 0-1 knapsack polytope. Finally, we show that superlinearity results can be extended to nonsuperlinear inequalities when the coefficients of the variables fixed at their upper bounds are large.This research was supported by NSF grants DMI-0100020 and DMI-0121495Mathematics Subject Classification (1991): 90C11, 90C27  相似文献   

9.
The n-step mixed integer rounding (MIR) inequalities of Kianfar and Fathi (Math Program 120(2):313–346, 2009) are valid inequalities for the mixed-integer knapsack set that are derived by using periodic n-step MIR functions and define facets for group problems. The mingling and 2-step mingling inequalities of Atamtürk and Günlük (Math Program 123(2):315–338, 2010) are also derived based on MIR and they incorporate upper bounds on the integer variables. It has been shown that these inequalities are facet-defining for the mixed integer knapsack set under certain conditions and generalize several well-known valid inequalities. In this paper, we introduce new classes of valid inequalities for the mixed-integer knapsack set with bounded integer variables, which we call n-step mingling inequalities (for positive integer n). These inequalities incorporate upper bounds on integer variables into n-step MIR and, therefore, unify the concepts of n-step MIR and mingling in a single class of inequalities. Furthermore, we show that for each n, the n-step mingling inequality defines a facet for the mixed integer knapsack set under certain conditions. For n?=?2, we extend the results of Atamtürk and Günlük on facet-defining properties of 2-step mingling inequalities. For n ≥ 3, we present new facets for the mixed integer knapsack set. As a special case we also derive conditions under which the n-step MIR inequalities define facets for the mixed integer knapsack set. In addition, we show that n-step mingling can be used to generate new valid inequalities and facets based on covers and packs defined for mixed integer knapsack sets.  相似文献   

10.
We introduce a new class of second-order cover inequalities whose members are generally stronger than the classical knapsack cover inequalities that are commonly used to enhance the performance of branch-and-cut methods for 0–1 integer programming problems. These inequalities result by focusing attention on a single knapsack constraint in addition to an inequality that bounds the sum of all variables, or in general, that bounds a linear form containing only the coefficients 0, 1, and –1. We provide an algorithm that generates all non-dominated second-order cover inequalities, making use of theorems on dominance relationships to bypass the examination of many dominated alternatives. Furthermore, we derive conditions under which these non-dominated second-order cover inequalities would be facets of the convex hull of feasible solutions to the parent constraints, and demonstrate how they can be lifted otherwise. Numerical examples of applying the algorithm disclose its ability to generate valid inequalities that are sometimes significantly stronger than those derived from traditional knapsack covers. Our results can also be extended to incorporate multiple choice inequalities that limit sums over disjoint subsets of variables to be at most one.   相似文献   

11.
Cover inequalities are commonly used cutting planes for the 0–1 knapsack problem. This paper describes a linear-time algorithm (assuming the knapsack is sorted) to simultaneously lift a set of variables into a cover inequality. Conditions for this process to result in valid and facet-defining inequalities are presented. In many instances, the resulting simultaneously lifted cover inequality cannot be obtained by sequentially lifting over any cover inequality. Some computational results demonstrate that simultaneously lifted cover inequalities are plentiful, easy to find and can be computationally beneficial.  相似文献   

12.
New variants of greedy algorithms, called advanced greedy algorithms, are identified for knapsack and covering problems with linear and quadratic objective functions. Beginning with single-constraint problems, we provide extensions for multiple knapsack and covering problems, in which objects must be allocated to different knapsacks and covers, and also for multi-constraint (multi-dimensional) knapsack and covering problems, in which the constraints are exploited by means of surrogate constraint strategies. In addition, we provide a new graduated-probe strategy for improving the selection of variables to be assigned values. Going beyond the greedy and advanced greedy frameworks, we describe ways to utilize these algorithms with multi-start and strategic oscillation metaheuristics. Finally, we identify how surrogate constraints can be utilized to produce inequalities that dominate those previously proposed and tested utilizing linear programming methods for solving multi-constraint knapsack problems, which are responsible for the current best methods for these problems. While we focus on 0–1 problems, our approaches can readily be adapted to handle variables with general upper bounds.  相似文献   

13.
14.
During the last decades, much research has been conducted on deriving classes of valid inequalities for mixed integer knapsack sets, which we call knapsack cuts. Bixby et?al. (The sharpest cut: the impact of Manfred Padberg and his work. MPS/SIAM Series on Optimization, pp. 309?C326, 2004) empirically observe that, within the context of branch-and-cut algorithms to solve mixed integer programming problems, the most important inequalities are knapsack cuts derived by the mixed integer rounding (MIR) procedure. In this work we analyze this empirical observation by developing an algorithm to separate over the convex hull of a mixed integer knapsack set. The main feature of this algorithm is a specialized subroutine for optimizing over a mixed integer knapsack set which exploits dominance relationships. The exact separation of knapsack cuts allows us to establish natural benchmarks by which to evaluate specific classes of them. Using these benchmarks on MIPLIB 3.0 and MIPLIB 2003 instances we analyze the performance of MIR inequalities. Our computations, which are performed in exact arithmetic, are surprising: In the vast majority of the instances in which knapsack cuts yield bound improvements, MIR cuts alone achieve over 87% of the observed gain.  相似文献   

15.
16.
We study a constrained version of the knapsack problem in which dependencies between items are given by the adjacencies of a graph. In the 1-neighbour knapsack problem, an item can be selected only if at least one of its neighbours is also selected. In the all-neighbours knapsack problem, an item can be selected only if all its neighbours are also selected.We give approximation algorithms and hardness results when the vertices have both uniform and arbitrary weight and profit functions, and when the dependency graph is directed and undirected.  相似文献   

17.
We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Such structure arises in a wide variety of important problems, e.g. blending and portfolio selection. We show how strong inequalities valid for the semi-continuous knapsack polyhedron can be derived and used in a branch-and-cut scheme for problems with semi-continuous variables. To demonstrate the effectiveness of these inequalities, which we call collectively semi-continuous cuts, we present computational results on real instances of the unit commitment problem, as well as on a number of randomly generated instances of linear programming with semi-continuous variables.  相似文献   

18.
An equivalence between simplen-person cooperative games and linear integer programs in 0–1 variables is presented and in particular the nucleolus and kernel are shown to be special valid inequalities of the corresponding 0–1 program. In the special case of weighted majority games, corresponding to knapsack inequalities, we show a further class of games for which the nucleolus is a representation of the game, and develop a single test to show when payoff vectors giving identical amounts or zero to each player are in the kernel. Finally we give an algorithm for computing the nucleolus which has been used successfully on weighted majority games with over twenty players.  相似文献   

19.
This paper presents a study of the polytope defined by the minimizing form of the binary knapsack inequality, which is a greater-than-or-equal-to constraint, augmented by disjoint generalized upper bound constraints. A set of valid inequalities, called α-cover inequalities, is characterized and dominance relationships among them are established. Both sequential and sequence-independent lifting procedures are presented to tighten an α-cover inequality that is not facet defining. Computational results aimed at evaluating the strength of the non-dominated, sequentially, and sequence-independent lifted α-cover inequalities are provided.  相似文献   

20.
For the minimization knapsack problem with Boolean variables, primal and dual greedy algorithms are formally described. Their relations to the corresponding algorithms for the maximization knapsack problem are shown. The average behavior of primal and dual algorithms for the minimization problem is analyzed. It is assumed that the coefficients of the objective function and the constraint are independent identically distributed random variables on [0, 1] with an arbitrary distribution having a density and that the right-hand side d is deterministic and proportional to the number of variables (i.e., d = μn). A condition on μ is found under which the primal and dual greedy algorithms have an asymptotic error of t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号