首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a polynomial time algorithm to construct a bidirected graph for any totally unimodular matrix B by finding node-edge incidence matrices Q and S such that QB=S. Seymour’s famous decomposition theorem for regular matroids states that any totally unimodular (TU) matrix can be constructed through a series of composition operations called k-sums starting from network matrices and their transposes and two compact representation matrices B1,B2 of a certain ten element matroid. Given that B1,B2 are binet matrices we examine the k-sums of network and binet matrices. It is shown that thek-sum of a network and a binet matrix is a binet matrix, but binet matrices are not closed under this operation for k=2,3. A new class of matrices is introduced, the so-called tour matrices, which generalise network, binet and totally unimodular matrices. For any such matrix there exists a bidirected graph such that the columns represent a collection of closed tours in the graph. It is shown that tour matrices are closed under k-sums, as well as under pivoting and other elementary operations on their rows and columns. Given the constructive proofs of the above results regarding the k-sum operation and existing recognition algorithms for network and binet matrices, an algorithm is presented which constructs a bidirected graph for any TU matrix.  相似文献   

2.
This paper deals with linear and integer programming problems in which the constraint matrix is a binet matrix. Linear programs can be solved with the generalized network simplex method, while integer programs are converted to a matching problem. It is also proved that an integral binet matrix has strong Chvátal rank 1.  相似文献   

3.
We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized centrosymmetric matrices. Then we explore the properties of the eigenvectors to derive an efficient algorithm that is able to deliver a matrix with the required structure and spectrum. We have implemented our ideas in a Matlab code. Numerical results produced with this code are included.  相似文献   

4.
实对称矩阵的特征值问题,无论是低阶稠密矩阵的全部特征值问题,或高阶稀疏矩阵的部分特征值问题,都已有许多有效的计算方法,迄今最重要的一些成果已总结在[5]中。本文利用规范矩阵的一些重要性质将对于Hermite矩阵(特别是对弥矩阵)特征值问题的一些有效算法推广到规范矩阵的特征值问题,由于对复规范阵的推广是简单的,而且实际上常遇到的是实矩阵(这时常要求只用实运算),因此我们着重讨论实规范矩阵的特征值问题。  相似文献   

5.
模糊关系矩阵传递闭包的Warshall算法   总被引:8,自引:2,他引:6  
通过对照关系的传递闭包和模糊关系的传递闭包,把求关系矩阵的传递闭包的算法完整地推广到模糊关系矩阵上。  相似文献   

6.
主要研究对称正定矩阵群上的内蕴最速下降算法的收敛性问题.首先针对一个可转化为对称正定矩阵群上无约束优化问题的半监督度量学习模型,提出对称正定矩阵群上一种自适应变步长的内蕴最速下降算法.然后利用李群上的光滑函数在任意一点处带积分余项的泰勒展开式,证明所提算法在对称正定矩阵群上是线性收敛的.最后通过在分类问题中的数值实验说明算法的有效性.  相似文献   

7.
In this paper, we investigate the properties of a special kind of periodic Jacobi matrices. We show that the solution of the inverse problem for periodic Jacobi matrices is unique if and only if the matrix is of that special kind. Moreover, we present an algorithm to construct the solution of that inverse problem and give some illustrative examples. Finally, we perform a stability analysis of the algorithm.  相似文献   

8.
In this paper we investigate symbolic implementation of two modifications of the Leverrier-Faddeev algorithm, which are applicable in computation of the Moore-Penrose and the Drazin inverse of rational matrices. We introduce an algorithm for computation of the Drazin inverse of rational matrices. This algorithm represents an extension of the papers [11] and [14]. and a continuation of the papers [15, 16]. The symbolic implementation of these algorithms in the package mathEmatica is developed. A few matrix equations are solved by means of the Drazin inverse and the Moore-Penrose inverse of rational matrices.  相似文献   

9.
In this paper, we consider a linear restriction problem of Hermitian reflexive matrices and its approximation. By using the properties and structure of Hermitian reflexive matrices and the special properties of reflexive vectors and anti-reflexive vectors, we convert the linear restriction problem to an equivalence problem trickily, which is a special feature of this paper and is a different method from other articles. Then we solve this problem completely and also obtain its optimal approximate solution. Moreover, an algorithm provided for it and the numerical examples show that the algorithm is feasible.  相似文献   

10.
In this note we show that an asymptotically fast algorithm may be designed in order to realize a block LU-factorization of confluent Vandermonde matrices. This result is based on a displacement structure satisfied by confluent Vandermonde matrices and on factorizations of the block elements in terms of triangular Toeplitz matrices.  相似文献   

11.
1 引 言 本文研究了广义特征值问题 Ax=λBx (1)的并行计算。其中,A,B均为半带宽为r的n阶实对称带状矩阵且其中之一是正定的.本文总假设B是正定的.  相似文献   

12.
The concept of pseudospectra was introduced by Trefethen during the 1990s and became a popular tool to explain the behavior of non-normal matrices. In this paper, we propose a fast algorithm for computing the pseudospectra of Toeplitz matrices by using fast Toeplitz QR factorization. Numerical experiments are given to illustrate the efficiency of the new algorithm.  相似文献   

13.
1引言 考虑在并行计算机上解大型线性方程组AX=b假定有K台处理机可供使用,并且对于局部数据,处理机能执行不同的指令序列,毗邻的处理机之间能自然地通讯。  相似文献   

14.
In this work, we propose a proximal algorithm for unconstrained optimization on the cone of symmetric semidefinite positive matrices. It appears to be the first in the proximal class on the set of methods that convert a Symmetric Definite Positive Optimization in Nonlinear Optimization. It replaces the main iteration of the conceptual proximal point algorithm by a sequence of nonlinear programming problems on the cone of diagonal definite positive matrices that has the structure of the positive orthant of the Euclidian vector space. We are motivated by results of the classical proximal algorithm extended to Riemannian manifolds with nonpositive sectional curvature. An important example of such a manifold is the space of symmetric definite positive matrices, where the metrics is given by the Hessian of the standard barrier function −lndet(X). Observing the obvious fact that proximal algorithms do not depend on the geodesics, we apply those ideas to develop a proximal point algorithm for convex functions in this Riemannian metric.  相似文献   

15.
In this paper, we consider how to factor symmetric totally nonpositive matrices and their inverses by taking advantage of the symmetric property. It is well-known that the Bunch-Kaufman algorithm is the most commonly used pivoting strategy which can, however, produce arbitrarily large entries in the lower triangular factor for such matrices as illustrated by our example. Therefore, it is interesting to show that when the Bunch-Parlett algorithm is simplified for these matrices, it only requires O(n 2) comparisons with the growth factor being nicely bounded by 4. These facts, together with a nicely bounded lower triangular factor and a pleasantly small relative backward error, show that the Bunch-Parlett algorithm is more preferable than the Bunch-Kaufman algorithm when dealing with these matrices.  相似文献   

16.
Minimal residual methods, such as MINRES and GMRES, are well-known iterative versions of direct procedures for reducing a matrix to special condensed forms. The method of reduction used in these procedures is a sequence of unitary similarity transformations, while the condensed form is a tridiagonal matrix (MINRES) or a Hessenberg matrix (GMRES). The algorithm CSYM proposed in the 1990s for solving systems with complex symmetric matrices was based on the tridiagonal reduction performed via unitary congruences rather than similarities. In this paper, we construct an extension of this algorithm to the entire class of conjugate-normal matrices. (Complex symmetric matrices are a part of this class.) Numerical results are presented. They show that, on many occasions, the proposed algorithm has a superior convergence rate compared to GMRES.  相似文献   

17.
The problem tackled in this paper deals with products of a finite number of triangular matrices in Max-Plus algebra, and more precisely with an optimization problem related to the product order. We propose a polynomial time optimization algorithm for 2×2 matrices products. We show that the problem under consideration generalizes numerous scheduling problems, like single machine problems or two-machine flow shop problems. Then, we show that for 3×3 matrices, the problem is NP-hard and we propose a branch-and-bound algorithm, lower bounds and upper bounds to solve it. We show that an important number of results in the literature can be obtained by solving the presented problem, which is a generalization of single machine problems, two- and three-machine flow shop scheduling problems. The branch-and-bound algorithm is tested in the general case and for a particular case and some computational experiments are presented and discussed.  相似文献   

18.
In this paper we present an analytical forms for the inversion of general periodic tridiagonal matrices, and provide some very simple analytical forms which immediately lead to closed formulae for some special cases such as symmetric or perturbed Toeplitz for both periodic and non-periodic tridiagonal matrices. An efficient computational algorithm for finding the inverse of any general periodic tridiagonal matrices from the analytical form is given, it is suited for implementation using Computer Algebra systems such as MAPLE, MATLAB, MACSYMA, and MATHEMATICA. An example is also given to illustrate the algorithm.  相似文献   

19.
In this paper we present an algorithm for approximating the range of the real eigenvalues of interval matrices. Such matrices could be used to model real-life problems, where data sets suffer from bounded variations such as uncertainties (e.g. tolerances on parameters, measurement errors), or to study problems for given states.The algorithm that we propose is a subdivision algorithm that exploits sophisticated techniques from interval analysis. The quality of the computed approximation and the running time of the algorithm depend on a given input accuracy. We also present an efficient C++ implementation and illustrate its efficiency on various data sets. In most of the cases we manage to compute efficiently the exact boundary points (limited by floating point representation).  相似文献   

20.
In this paper we describe a computational study of block principal pivoting (BP) and interior-point predictor-corrector (PC) algorithms for the solution of large-scale linear complementarity problems (LCP) with symmetric positive definite matrices. This study shows that these algorithms are in general quite appropriate for this type of LCPs. The BP algorithm does not seem to be sensitive to bad scaling and degeneracy of the unique solution of the LCP, while these aspects have some effect on the performance of the PC algorithm. On the other hand, the BP method has not performed well in two LCPs with ill-conditioned matrices for which the PC algorithm has behaved quite well.A hybrid algorithm combining these two techniques is also introduced and seems to be the most robust procedure for the solution of large-scale LCPs with symmetric positive definite matrices.Support of this work has been provided by the Instituto de Telecomunicações.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号