首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UV photodissociation (<5 eV) of diiodomethane (CH(2)I(2)) is investigated by spin-orbit ab initio calculations. The experimentally observed photodissociation channels in the gas and condensed phases are clearly assigned by multi-state second-order multiconfigurational perturbation theory in conjunction with spin-orbit interaction through complete active space-state interaction potential energy curves. The calculated results indicate that the fast dissociations of the first two singlet states of CH(2)I(2) and CH(2)I--I lead to geminate-radical products, CH(2)I (.)+I((2)P(3/2)) or CH(2)I (.)+ I*((2)P(1/2)). The recombination process from CH(2)I--I to CH(2)I(2) is explained by an isomerization process and a secondary photodissociation reaction of CH(2)I--I. Finally, the study reveals that spin-orbits effects are significant in the quantitative analysis of the electronic spectrum of the CH(2)I--I species.  相似文献   

2.
A clear and reliable theoretical investigation on dibromomethane (CH(2)Br(2)) photodissociation is desired. The calculation must consider: (i) relativistic effects; (ii) the potential energy curves (PECs) of spin-orbit coupling states; (iii) geometry optimization by the method with both static and dynamic electron correlations; (iv) solvent effects on the photodissociation in the solution. All these have been considered in this study by state-of-the-art quantum chemical calculations. The experimentally observed photodissociation in the gas phase with products of spin-orbit-coupled states, Br((2)P(3/2)) and Br*((2)P(1/2)), was assigned by multi-state second order multiconfigurational perturbation theory in conjunction with spin-orbit interaction through complete active space state interaction (MS-CASPT2/CASSI-SO) PECs. The mechanisms of the experimentally observed photodissociation and photoisomerization in solvent were elucidated by the MS-CASPT2/CASSI-SO method combined with polarized continuum model of the solvent.  相似文献   

3.
Quantum chemical calculations with relativistic effects were performed on the photodissociation of o-, m-, and p-bromofluorobenzene (o-, m-, and p-BrFPh) at 266 nm. The method of multistate second-order multiconfigurational perturbation theory in conjunction with spin-orbit interaction through complete active space state interaction was employed to calculate the potential energy curves for the ground and low-lying excited states of o-, m-, and p-BrFPh along their photodissociation reaction coordinates. The dissociation mechanisms with products of Br((2)P(3∕2)) and Br(?)((2)P(1∕2)) states were clarified with the computed potential energy curves and the surface crossings. The current calculations augmented previous theoretical investigations by including relativistic effects and resolved some differences of experimental assignment regarding the dissociation channels of o-, m-, and p-BrFPh.  相似文献   

4.
The photodissociation dynamics of m-bromofluorobenzene has been experimentally investigated at around 240 nm using the DC-slice velocity map imaging technique. The kinetic energy release spectra and the recoiling angular distributions of fragmented Br(2P3/2) and Br(2P1/2) atoms from photodissociation of m-bromofluorobenzene have been measured at different photolysis wavelengths around 240 nm. The experimental results indicate that two dissociation pathways via (pre-)dissociation of the two low-lying 1ππ* excited states dominate the production process of the ground state Br(2P3/2) atoms. Because of the weak spin-orbit coupling effect among the low-lying triplet and singlet states, the spin-orbit excited Br(2P1/2) atoms are mainly produced via singlet-triplet state coupling in the dissociation step. The similarity between the present results and that recently reported for o-bromofluorobenzene indicates that the substitution position of the fluorine atom does not significantly affect the UV photodissociation dynamics of bromofluorobenzenes.  相似文献   

5.
The photodissociations of o-, m-, and p-bromotoluene were investigated by ab initio and spin-orbit ab initio calculations. The possible photodissociation mechanisms at 266 and 193 nm were clarified by multistate second order multiconfigurational perturbation theory (MS-CASPT2) calculated potential energy curves, vertical excitation energies, and oscillator strengths of low-lying states. The dissociation products with spin-orbit-coupled states of Br(*)((2)P(12)) and Br((2)P(32)) were identified by the MS-CASPT2 method in conjunction with spin-orbit interaction through complete active space state interaction (MS-CASPT2/CASSI-SO) calculations. The effects of methyl rotation and substituent on the photodissociation mechanism were discussed.  相似文献   

6.
The photodissociation of ethyl bromide (C2H5Br) has been investigated by spin-orbit (SO) ab initio calculations. The vertical excitation energies of some excited states for C2H5Br were calculated. The potential energy curves of C2H5Br along the C–Br dissociation coordinate were calculated by multistate second-order multiconfigurational perturbation theory in conjunction with spin-orbit (SO) interaction through complete active space state interaction (MS-CASPT2/CASSI-SO). The calculated results clearly assigned the experimentally observed photodissociation channels leading to C2H5 + Br (2P3/2) and C2H5 + Br*(2P1/2).  相似文献   

7.
A set of photodissociation experiments and simulations of hydrogen iodide (HI) on Arn clusters, with an average size n = 139, has been carried out for different laser polarizations. The doped clusters are prepared by a pick-up process. The HI molecule is then photodissociated by a UV laser pulse and the outgoing H fragment is ionized by resonance enhanced multiphoton ionization in a (2 + 1) excitation scheme within the same laser pulse at the wavelength of 243 nm. The measured time-of-flight spectra are transformed into hydrogen kinetic energy distributions. They exhibit a strong fraction of caged H atoms at zero-kinetic energy and peaks at the unperturbed cage exit for both spin-orbit channels nearly independent of the polarization. At this dissociation wavelength, the bare HI molecule exhibits a strict state separation, with a parallel transition to the spin-orbit excited state and perpendicular transitions to the ground state. The experimental results have been reproduced using molecular simulation techniques. Classical molecular dynamics was used to estimate the HI dopant distribution after the pick-up procedure. Subsequently, quasi-classical molecular dynamics (Wigner trajectories approach) has been applied for the photodissociation dynamics. The following main results have been obtained: (i) The HI dopant lands on the surface of the argon cluster during the pick-up process, (ii) zero-point energy plays a dominant role for the hydrogen orientation in the ground state of HI-Arn surface clusters, qualitatively changing the result of the photodissociation experiment upon increasing the number of argon atoms, and, finally, (iii) the scattering of hydrogen atoms from the cage which originate from different dissociation states seriously affects the experimentally measured kinetic energy distributions.  相似文献   

8.
姬磊  唐颖  朱荣淑  唐碧峰  张嵩  张冰 《化学学报》2004,62(13):1211-1216,J002
利用飞行时间质谱装置研究了234和267nm激光作用下二溴甲烷、二溴乙烷、二溴丙烷和二溴丁烷分子的光解离过程.研究表明二溴代烷烃分子在紫外激光的作用下主要是断裂C—Br键解离出一个Br原子,并且存在两种可能的布居:基态Br(^2P3/2^0)和激发态Br^*(^2P1/2^0).通过共振增强多光子电离技术探测两种光解产物布居的分支比.对比得到了分子构型对称性不同的二溴代烷烃的分支比,提出了两种假设的光解离模型.  相似文献   

9.
Photodissociations of the o-, m-, and p-chlorotoluene at 193 and 266 nm were investigated by ab initio calculations with and without spin-orbit interaction. The experimentally observed photodissociation channels were clearly assigned by multistate second order multiconfigurational perturbation theory (MS-CASPT2) calculated potential energy curves. The dissociation products with spin-orbit-coupled states of Cl*(2P1/2) and Cl(2P3/2) were identified by MS-CASPT2 in conjunction with spin-orbit interaction through complete active space state interaction (MS-CASPT2/CASSI-SO) calculations. The effects of methyl rotation and substituent on the photodissociation mechanism were discussed in detail.  相似文献   

10.
The structure of hydroxymethyl hydroperoxide (HOCH(2)OOH) (HMHP) has been examined using coupled cluster and multireference configuration interaction methods to study the excited states and probable photodissociation products. The results are compared to experiments. The vertical excitation energies for several excited states of HOCH(2)OOH are presented as well as the excited state energies along the O-O, O-H, C-O, and C-H dissociation pathways. The results help in the interpretation of experimental UV absorption spectra and elucidate the photodissociation mechanism of HMHP under tropospheric conditions.  相似文献   

11.
The real time photodissociation dynamics of CH(3)I from the A band has been studied experimentally and theoretically. Femtosecond pump-probe experiments in combination with velocity map imaging have been carried out to measure the reaction times (clocking) of the different (nonadiabatic) channels of this photodissociation reaction yielding ground and spin-orbit excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch and umbrella modes) CH(3) fragments. The measured reaction times have been rationalized by means of a wave packet calculation on the available ab initio potential energy surfaces for the system using a reduced dimensionality model. A 40 fs delay time has been found experimentally between the channels yielding vibrationless CH(3)(nu=0) and I((2)P(32)) and I(*)((2)P(12)) that is well reproduced by the calculations. However, the observed reduction in delay time between the I and I(*) channels when the CH(3) fragment appears with one or two quanta of vibrational excitation in the umbrella mode is not well accounted for by the theoretical model.  相似文献   

12.
The results of large-scale valence ab initio calculations of the potential-energy curves for the ground states and several excited states of Cd–rare gas (RG) van der Waals molecules are reported. In the calculations, Cd20+ and RG8+ cores are simulated by energy-consistent pseudopotentials, which also account for scalar-relativistic effects and spin-orbit interaction within the valence shell. The potential energies of the Cd–RG species in the ΛS coupling scheme have been evaluated by means of ab initio complete-active-space multiconfiguration self-consistent-field (CASSCF)/CAS multireference second-order perturbation theory (CASPT2) calculations with a total 28 valence electrons, but the spin-orbit matrix has been computed in a reduced configuration interaction space restricted to the CASSCF level. Finally, the Ω potential curves are obtained by diagonalization of the modified spin-orbit matrix (its diagonal elements before diagonalization substituted by the corresponding CASPT2 eigenenergies). The calculated potential curves, especially the spectroscopic parameters derived for the ground states and several excited states of the Cd–RG species are presented and discussed in the context of available experimental data. The theoretical results exhibit very good agreement with experiment. Received: 20 April 2000 / Accepted: 1 September 2000 / Published online: 21 December 2000  相似文献   

13.
The importance of vibrational-to-electronic (V-E) energy transfer mediated by spin-orbit coupling in the collisional removal of O2(X 3Sigmag-,upsilon>or=26) by O2 has been reported in a recent communication [F. Dayou, J. Campos-Martinez, M. I. Hernandez, and R. Hernandez-Lamoneda, J. Chem. Phys. 120, 10355 (2004)]. The present work provides details on the electronic properties of the dimer (O2)2 relevant to the self-relaxation of O2(X 3Sigmag-,upsilon>0) where V-E energy transfer involving the O2(a 1Deltag) and O2(b 1Sigmag+) states is incorporated. Two-dimensional electronic structure calculations based on highly correlated ab initio methods have been carried out for the potential-energy and spin-orbit coupling surfaces associated with the ground singlet and two low-lying excited triplet states of the dimer dissociating into O2(X 3Sigmag-)+O2(X 3Sigmag-), O2(a 1Deltag)+O2(X 3Sigmag-), and O2(b 1Sigmag+)+O2(X 3Sigmag-). The resulting interaction potentials for the two excited triplet states display very similar features along the intermolecular separation, whereas differences arise with the ground singlet state for which the spin-exchange interaction produces a shorter equilibrium distance and higher binding energy. The vibrational dependence is qualitatively similar for the three studied interaction potentials. The spin-orbit coupling between the ground and second excited states is already nonzero in the O2+O2 dissociation limit and keeps its asymptotic value up to relatively short intermolecular separations, where the coupling increases for intramolecular distances close to the equilibrium of the isolated diatom. On the other hand, state mixing between the two excited triplet states leads to a noticeable collision-induced spin-orbit coupling between the ground and first excited states. The results are discussed in terms of specific features of the dimer electronic structure (including a simple four-electron model) and compared with existing theoretical and experimental data. This work gives theoretical insight into the origin of electronic energy-transfer mechanisms in O2+O2 collisions.  相似文献   

14.
The photodissociation of H(2)Te through excitation in the first absorption band is investigated by means of multireference spin-orbit configuration interaction (CI) calculations. Bending potentials for low-lying electronic states of H(2)Te are obtained in C(2v) symmetry for Te-H distances fixed at the ground state equilibrium value of 3.14a(0), as well as for the minimum energy path constrained to R(1)=R(2). Asymmetric cuts of potential energy surfaces for excited states (at R(1)=3.14a(0) and theta;=90.3 degrees ) are obtained for the first time. It is shown that vibrational structure in the 380-400 nm region of the long wavelength absorption tail is due to transitions to 3A('), which has a shallow minimum at large HTe-H separations. Transitions to this state are polarized in the molecular plane, and this state converges to the excited TeH((2)Pi(1/2))+H((2)S) limit. These theoretical data are in accord with the selectivity toward TeH((2)Pi(1/2)) relative to TeH((2)Pi(3/2)) that has been found experimentally for 355 nm H(2)Te photodissociation. The calculated 3A(')<--XA(') transition dipole moment increases rapidly with HTe-H distance; this explains the observation of 3A(') vibrational structure for low vibrational levels, despite unfavorable Franck-Condon factors. According to the calculated vertical energies and transition moment data, the maximum in the first absorption band at approximately 245 nm is caused by excitation to 4A("), which has predominantly 2(1)A(") ((1)B(1) in C(2v) symmetry) character.  相似文献   

15.
The photoionization and photodissociation dynamics of H(2) and D(2) in selected rovibrational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states have been investigated by velocity map ion imaging. The selected rotational levels of the B (1)Sigma(u) (+) and C (1)Pi(u) states are prepared by three-photon excitation from the ground state. The absorption of fourth photon results in photoionization to produce H(2)(+) X (2)Sigma(g)(+) or photodissociation to produce a ground-state H(1s) atom and an excited H atom with n >or= 2. The H(2) (+) ion can be photodissociated by absorption of a fifth photon. The resulting H(+) or D(+) ion images provide information on the vibrational state dependence of the photodissociation angular distribution of the molecular ion. The excited H(n >or= 2) atoms produced by the neutral dissociation process can also be ionized by the absorption of a fifth photon. The resulting ion images provide insight into the excited state branching ratios and angular distributions of the neutral photodissociation process. While the experimental ion images contain information on both the ionic and neutral processes, these can be separated based on constraints imposed on the fragment translational energies. The angular distribution of the rings in the ion images indicates that the neutral dissociation of molecular hydrogen and its isotopes is quite complex, and involves coupling to both doubly excited electronic states and the dissociation continua of singly excited Rydberg states.  相似文献   

16.
Previous work has shown that pentacoordinated bromine compounds have their lowest excited electronic states shifted to the blue relative to monocoordinated bromine molecules, and that this shift may be large enough to render them photostable in the lower stratosphere. Our earlier work has also shown that certain pentacoordinated bromine compounds are thermodynamically stable relative to their mono- or tricoordinated isomers, suggesting that if a bromine stratospheric reservoir species exists, it may be a pentacoordinated compound. In this study we have examined the singlet and triplet excited electronic states of several bromine compounds, using time dependent density functional theory, to assess their photostability under stratospheric conditions and in order to elucidate the nature of lowest excited states in mono-, tri-, and pentacoordinated bromine molecules. The triplet states have been included due to the strong spin-orbit mixing in bromine. We have found several pentacoordinated bromine/oxygen compounds that could be photostable in the lower stratosphere, but we have also found that monovalent bromine compounds where the bromine atom is bonded to an atom with no lone-pair p-electrons is far and away the most photostable. Attachment/detachment electron density plots have been useful in ascertaining the nature of the excited electronic states and their likely path to photodissociation.  相似文献   

17.
The structural and electronic properties of the excited electronic states of AgX(2) (X = F, Cl, Br, and I), have been calculated, taking electron correlation and spin-orbit coupling into account and employing improved relativistic-effective-core potentials for silver and the halogen atoms. The relative ordering of the excited states of these molecules has been discussed via molecular-orbital arguments. The spin-orbit splittings of three degenerate electronic states ((2)Pi(g), (2)Pi(u), and (2)Delta(g)) have been calculated and the spin-orbit induced inter-state (Sigma - Pi) coupling has been discussed. The composition of the spin-orbit eigenstates is analyzed in terms of scalar-relativistic electronic states. Finally, a theoretical prediction of the photodetachment bands of the title molecules has been accomplished.  相似文献   

18.
Photoionization of the iodine atom following methyl iodide A-band photodissociation was studied over the wavelength range of 245.5-261.6 nm by photoelectron imaging technique. Final state-specific speed and angular distributions of the photoelectron were recorded. Two types of the photoelectron resulted from ionizing the I atom from the photodissociation of CH3I were identified: (a) (2+1) REMPI of the ground state I atom, and (b) two-photon excitation of spin-orbit excited I(2P1/2) to autoionizing resonances converging to the 3P1 state of I+. In addition, some weaker signals were attributed to one-photon ionization of I atoms produced in some higher excited states from multiphoton ionization of CH3I followed by dissociation. Analysis of relative branching ratios to different levels of I+ (in case a) revealed that the final ion level distributions are generally dominated by the preservation of the ion-core configuration of the intermediate resonant state. A qualitative interpretation of the electron angular distribution from an autoionization process is also given.  相似文献   

19.
In this paper we describe the mechanism of the photodissociation of CBr4 in various solvents. We have monitored and identified the intermediate species and determined the growth and decay rates of the excited states and metastable species formed during the photodissociation process by means of ultrafast time-resolved spectroscopy. On the basis of the experimental data presented in this paper, the observed transient spectra and species have been assigned to the stabilized solvated ion pair (CBr3+//Br-)solv.  相似文献   

20.
Multireference spin-orbit configuration interaction calculations of transition moments from the X A1 ground state to the 3Q0+, 3Q1, and 1Q excited states responsible for the A absorption band of CH3I are reported and employed for an analysis of the photofragmentation in this system. Contrary to what is usually assumed, the 3Q0+(A1), 3Q1(E), and 1Q(E)<--X A1 transition moments are found to be strongly dependent on the C-I fragmentation coordinate. The sign of this dependence is opposite for the parallel and perpendicular transitions, which opens an opportunity for vibrational state control of the photodissociation product yields. The computed absorption intensity distribution and the I* quantum yield as a function of excitation energy are analyzed in comparison with existing experimental data, and good agreement between theory and experiment is found. It is predicted that significantly higher I* quantum yield values (>0.9) may be achieved when vibrationally hot CH3I molecules are excited in the appropriate spectral range. It is shown that vibrational state control of the I*/I branching ratio in the alkyl (hydrogen) iodide photodissociation has an electronic rather than a dynamic nature: Due to a different electron density distribution at various molecular geometries, one achieves a more efficient excitation of a particular fragmentation channel rather than influences the dynamics of the decay process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号