首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The piston problem is investigated in the case where the length of the cylinder is infinite (on both sides) and the ratio m/M is a very small parameter, where m is the mass of one particle of the gaz and M is the mass of the piston. Introducing initial conditions such that the stochastic motion of the piston remains in the average at the origin (no drift), it is shown that the time evolution of the fluids, analytically derived from Liouville equation in a previous work, agrees with the Second Law of thermodynamics. We thus have a non equilibrium microscopical model whose evolution can be explicitly shown to obey the two laws of thermodynamics.  相似文献   

2.
The working current dependences of the thermodynamic and electrophysical parameters of a free plasma piston moving with a near-maximal velocity in the channel of an electromagnetic rail launcher with graphite electrodes are obtained. The composition and weight of the plasma depend on the degree of electrode erosion due to discharge current passage (i = 40–80 kA). It is shown that the mean temperature of the plasma piston only slightly depends on the plasma mean pressure and plasma piston weight and increases with current by a near-power law. The measured values of the maximal velocity of the plasma piston front are compared with the calculated value of the sound velocity inside the piston. With the working current and cross-sectional area of the channel fixed, the initial gas density in the channel is found to influence the ratio of the piston maximal velocity to the sound velocity in the plasma. If the initial gas density is low (lower than some critical value), the maximal velocity of the plasma piston front exceeds the sound velocity in the plasma.  相似文献   

3.
We consider the evolution of a system composed of N non-interacting point particles of mass m in a cylindrical container divided into two regions by a movable adiabatic wall (the adiabatic piston). We study the thermodynamic limit for the piston where the area A of the cross-section, the mass M of the piston, and the number N of particles go to infinity keeping A/M and N/M fixed. The length of the container is a fixed parameter which can be either finite or infinite. In this thermodynamic limit we show that the motion of the piston is deterministic and the evolution is adiabatic. Moreover if the length of the container is infinite, we show that the piston evolves toward a stationary state with velocity approximately proportional to the pressure difference. If the length of the container is finite, introducing a simplifying assumption we show that the system evolves with either weak or strong damping toward a well-defined state of mechanical equilibrium where the pressures are the same, but the temperatures different. Numerical simulations are presented to illustrate possible evolutions and to check the validity of the assumption.  相似文献   

4.
We consider a large number of particles on a one-dimensional latticel Z in interaction with a heat particle; the latter is located on the bond linking the position of the particle to the point to which it jumps. The energy of a single particle is given by a potentialV(x), xZ. In the continuum limit, the classical version leads to Brownian motion with drift. A quantum version leads to a local drift velocity which is independent of the applied force. Both these models obey Einstein's relation between drift, diffusion, and applied force. The system obeys the first and second laws of thermodynamics, with the time evolution given by a pair of coupled non linear heat equations, one for the density of the Brownian particles and one for the heat occupation number; the equation for a tagged Brownian particle can be written as a stochastic differential equation.  相似文献   

5.
We continue the study of the time evolution of a system consisting of a piston in a cubical container of large size L filled with an ideal gas. The piston has mass ML 2 and undergoes elastic collisions with NL 3 gas particles of mass m. In a previous paper, Lebowitz et al. considered a scaling regime, with time and space scaled by L, in which they argued heuristically that the motion of the piston and the one particle distribution of the gas satisfy autonomous coupled differential equations. Here we state exact results and sketch proofs for this behavior.  相似文献   

6.
The Boltzmann equation describing one-dimensional motion of a charged hard rod in a neutral hard rod gas at temperatureT = 0 is solved. Under the action of a constant and uniform field the charged particle attains a stationary state. In the long time limit the velocity autocorrelation function decays via damped oscillations. In the reference system moving with the mean particle velocity the decay of fluctuations in the position space is governed (in the hydrodynamic limit) by the diffusion equation. Both the stationary current and the diffusion coefficient are proportional to the square root of the field. It is conjectured that this result also holds forT > 0 in a strong field limit.On leave from the Institute of Theoretical Physics, University of Warsaw, Hoza 69, 00-081 Warsaw, Poland.  相似文献   

7.
Study of electron drift velocity caused by Etimes B motion is done with the help of a Mach probe in a dc cylindrical magnetron sputtering system at different plasma discharge parameters like discharge voltage, gas pressure and applied magnetic field strength. The interplay of the electron drift with the different discharge parameters has been investigated. Strong radial variation of the electron drift velocity is observed and is found to be maximum near the cathode and it decreases slowly with the increase of radial distance from the cathode. The sheath electric field, E measured experimentally from potential profile curve using an emissive probe is contributed to the observed radial variation of the electron drift velocity. The measured values of the drift velocities are also compared with the values from the conventional theory using the experimental values of electric and magnetic fields. This study of the drift velocity variation is helpful in providing a useful insight for determining the discharge conditions and parameters for sputter deposition of thin film.  相似文献   

8.
Abstract

A solvable many-body problem in the plane is exhibited. It is characterized by rotation-invariant Newtonian (“acceleration equal force”) equations of motion, featuring one-body (“external”) and pair (“interparticle”) forces. The former depend quadratically on the velocity, and nonlinearly on the coordinate, of the moving particle. The latter depend linearly on the coordinate of the moving particle, and linearly respectively nonlinearly on the velocity respectively the coordinate of the other particle. The model contains 2n 2 arbitrary coupling constants, n being the number of particles. The behaviour of the solutions is outlined; special cases in which the motion is confined (multiply periodic), or even completely periodic, are identified.  相似文献   

9.
We study numerically and theoretically (on a heuristic level) the time evolution of a gas confined to a cube of size L 3 divided into two parts by a piston with mass M L L 2 which can only move in the x-direction. Starting with a uniform double-peaked (non Maxwellian) distribution of the gas and a stationary piston, we find that (a) after an initial quiescent period the system becomes unstable and the piston performs a damped oscillatory motion, and (b) there is a thermalization of the system leading to a Maxwellian distribution of the gas velocities. The time of the onset of the instability appears to grow like L log L while the relaxation time to the Maxwellian grows like L 7/2.  相似文献   

10.
We consider a one-dimensional gas of hard point particles in a finite box that are in thermal equilibrium and evolving under Hamiltonian dynamics. Tagged particle correlation functions of the middle particle are studied. For the special case where all particles have the same mass, we obtain analytic results for the velocity auto-correlation function in the short time diffusive regime and the long time approach to the saturation value when finite-size effects become relevant. In the case where the masses are unequal, numerical simulations indicate sub-diffusive behaviour with mean square displacement of the tagged particle growing as t/ln(t) with time t. Also various correlation functions, involving the velocity and position of the tagged particle, show damped oscillations at long times that are absent for the equal mass case.  相似文献   

11.
Drift equations of motion are derived for a charged particle in the case of a strong electric field with allowance for relativistic effects of order v2/c2. The role of these effects is discussed along with the effects of a high-frequency field. The cases of weak and strong electric fields are distinguished [2] in the drift theory of the motion of charged particles in weakly inhomogeneous magnetic and electric fields. In the case of a weak electric field, the electric-drift velocity is vE v, where v is the characteristic velocity of the particle. For a strong electric field,v Ev.The drift theory has now been reasonably well developed for the case of weak electric fields in the classical and relativistic cases, for the absence of high-frequency fields and for the presence of these [1–3], Extension of the theory to strong electric fields involves considerable mathematical difficulties, and this has been done only in the classical approximation with and without hf fields [2–4], Here we consider the drift theory of charged-particle motion for the case of a strong electric field in the weakly relativistic approximation, incorporating terms of order v2/c2, where c is the velocity of light. Also hf fields may be present.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 7–9, September, 1981.  相似文献   

12.
The stochastic spreading of mass fluctuations in systems described by a fluctuating Burgers equation increases ast 2/3 with time. As a consequence the stochastic motion of a mass front, a point through which no excess mass current is flowing, is shown to increase ast 1/3. The same is true for the stochastic displacement of mass points and shock fronts with respect to their average drift, provided the initial configuration is fixed. An additional average over the stationary distribution of the initial configuration yields stochastic displacements, increasing with time ast 1/2.  相似文献   

13.
A method is proposed for determining the drift velocity of electrons from the position of the reversal point of the breakdown curve of an rf capacitative gas discharge. This method is used to obtain values of the electron drift velocity in hydrogen in the rangeE/p ≈ 50–2000 V·cm −1 ·Torr −1 which are in good agreement with experimental and theoretical data of other authors. State University, Kharkov. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 108–112, April, 1998.  相似文献   

14.
Nonlinear gas oscillations excited in an open tube by a flat piston at one of the tube ends are studied. The sinusoidal piston oscillations in the shock-free wave mode are created by a vibration exciter near the first eigenfrequency. Expressions for gas pressure oscillations are obtained for a tube with a nonrounded end without a flange and secondary flow velocity components. The influence of the piston displacement amplitude on the pressure range and secondary flow velocity of gas is studied. The theoretical calculations of the gas pressure are compared with experimental data. An estimate for the velocity of particle motion along the tube axis is presented with calculated values of the secondary flow velocity.  相似文献   

15.
The standard problem of a radial motion of test particles in the stationary gravitational field of a spherically symmetric celestial body is solved and is used to determine the time features of this motion. The problem is solved for the equations of motion of general relativity (GR), and the time features are obtained in the post-Newtonian approximation, with linear GR corrections proportional to r g /r and β 2 (in the solution being considered, they are of the same order of smallness) being taken rigorously into account. Total times obtained by integrating the time differentials along the trajectories of motion are considered as the time features in question. It is shown that, for any parameters of the motion, the proper time (which corresponds to watches comoving with a test particle) exceeds the time of watches at rest (watches at the surface of the celestial body being considered). The mass and the radius of the celestial body, as well as the initial velocity of the test particle, serve as arbitrary parameters of the motion. The time difference indicated above implies a leading role of the gravitational redshift, which decreases somewhat because of the opposite effect of the Doppler shift. The results are estimated quantitatively for the important (from the experimental point of view) case of vertical flights of rockets starting from the Earth’s surface. In this case, the GR corrections, albeit being extremely small (a few microseconds for several hours of the flight), aremeasurable with atomic (quantum) watches.  相似文献   

16.
 We study the time evolution of a charged particle moving in a medium under the action of a constant electric field E. In the framework of fully Hamiltonian models, we discuss conditions on the particle/medium interaction which are necessary for the particle to reach a finite limit velocity. We first consider the case when the charged particle is confined in an unbounded tube of ℝ3. The electric field E is directed along the symmetry axis of the tube and the particle also interacts with an infinitely many particle system. The background system initial conditions are chosen in a set which is typical for any reasonable thermodynamic (equilibrium or non-equilibrium) state. We prove that, for large E and bounded interactions between the charged particle and the background, the velocity v(t) of the charged particle does not reach a finite limit velocity, but it increases to infinite as: |v(t)−Et|≤C 0 (1+t), where C 0 is a constant independent of E. As a corollary we obtain that, if the initial conditions of the background system are distributed according to any Gibbs state, then the average velocity of the charged particle diverges as time goes to infinite. This result is obtained for E large enough in comparison with the mean energy of the Gibbs state. We next study the one-dimensional case, in which the estimates can be improved. We finally discuss, at an heuristic level, the existence of a finite limit velocity for unbounded interactions, and give some suggestions about the case of small electric fields. Received: 7 March 2002 / Accepted: 23 September 2002 Published online: 8 January 2003 RID="*" ID="*" Work partially supported by the GNFM-INDAM and the Italian Ministry of the University. Communicated by J.L. Lebowitz  相似文献   

17.
The paper considers longitudinal drift of small particles in a resonance tube, caused by periodic shock waves, and its effect on particle agglomeration. It is found that depending on particle size, drift is caused by shock waves and/or gas acceleration and compression. It is also shown that the drift velocity and direction can be controlled by the frequency of the piston that causes gas oscillations in the resonance tube. The obtained numerical solutions indicate that particle drift in a resonance tube enhances aerosol agglomeration. An agglomeration kernel is derived for this case, accounting for particle drift, leading to an estimate of agglomeration time. The time predicted by present model is of the same order of magnitude as that obtained from experiments in the literature.  相似文献   

18.
A physicomathematical model for calculating the dynamics of the electron-hole plasma in semiconductor opening switches for ultradense currents is developed. The model takes account of the real doping profile of a semiconductor p +-p-n-n + structure and the following elementary processes in the electron-hole plasma: current-carrier diffusion and drift in high electric fields, recombination on deep impurities and Auger recombination, and collisional ionization in a dense plasma. The electrical pumping circuit of the opening switch is calculated by solving the Kirchhoff equations. The motion of the plasma in the semiconductor structure is analyzed on the basis of the model. It is shown that for ultrahigh pumping levels the interruption of the current in the opening switch occurs in the heavily doped regions of the p +-p-n-n + structure and is due to saturation of the particle drift velocity in high electric fields. Zh. Tekh. Fiz. 67, 64–70 (October 1997)  相似文献   

19.
The motion of a charged particle in spatially homogeneous electric and magnetic fields is calculated for the case of the magnetic field to have a constant direction and its intensity to vary with an arbitrary power of time. The special case of a linearly increasing magnetic field is treated in detail taking into account a friction force proportional to the particle velocity. Generally, the equations of motion are reduced to a single differential equation of second order which is integrated exactly. The higher transcendental functions appearing in the solution are then approximated by elementary functions. Thus asymptotic approximative equations of a very simple form are obtained for position, velocity, kinetic energy and magnetic moment of the particle. The dependence of the particle orbit on the initial values of position and velocity and on the properties of the magnetic field is studied, and it is shown, how the particle motion is a helical motion superposed by a drift. The influence of the electric field induced by the time dependent magnetic field on the particle motion is considered in detail. For an additional electric field being present a drift formula is derived which is a generalization of the well-known ?? × ?? 93 drift for constant fields.  相似文献   

20.
We study the rolling motion of a small solid sphere on a fibrillated rubber substrate in an external field in the presence of a Gaussian noise. From the nature of the drift and the evolution of the displacement fluctuation of the ball, it is evident that the rolling is controlled by a complex non-linear friction at a low velocity and a low noise strength (K), but by a linear kinematic friction at a high velocity and a high noise strength. This transition from a non-linear to a linear friction control of motion can be discerned from another experiment in which the ball is subjected to a periodic asymmetric vibration in conjunction with a random noise. Here, as opposed to that of a fixed external force, the rolling velocity decreases with the strength of the noise suggesting a progressive fluidization of the interface. A state (K) and rate (V) dependent friction model is able to explain both the evolution of the displacement fluctuation as well as the sigmoidal variation of the drift velocity with K. This research sets the stage for studying friction in a new way, in which it is submitted to a noise and then its dynamic response is studied using the tools of statistical mechanics. Although more works would be needed for a fuller realization of the above-stated goal, this approach has the potential to complement direct measurements of friction over several decades of velocities and other state variables. It is striking that the non-Gaussian displacement statistics as observed with the stochastic rolling is similar to that of a colloidal particle undergoing Brownian motion in contact with a soft microtubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号