首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new high‐pressure borate HP‐Cs1?x(H3O)xB3O5 (x=0.5–0.7) was synthesized under high‐pressure/high‐temperature conditions of 6 GPa/900 °C in a Walker‐type multianvil apparatus. The compound crystallizes in the monoclinic space group C2/c (Z=8) with the parameters a=1000.6(2), b=887.8(2), c=926.3(2) pm, β=103.1(1)°, V=0.8016(3) nm3, R1=0.0452, and wR2=0.0721 (all data). The boron–oxygen network is analogous to those of the compounds HP‐MB3O5, (M=K, Rb) and exhibits all three structural motifs of borates—BO3 groups, corner‐sharing BO4 tetrahedra, and edge‐sharing BO4 tetrahedra—at the same time. Channels inside the boron–oxygen framework contain the cesium and oxonium ions, which are disordered on a specific site. Estimating the amount of hydrogen by solid‐state NMR spectroscopy and X‐ray diffraction led to the composition HP‐Cs1?x(H3O)xB3O5 (x=0.5–0.7), which implies a nonzero phase width.  相似文献   

2.
High-pressure/high-temperature conditions of 10 GPa and 1150 degrees C were used to synthesize the new rare-earth oxoborates alpha-(RE)(2)B(4)O(9) (RE=Eu, Gd, Tb, Dy) in a Walker-type multianvil apparatus. Single-crystal X-ray structure determination of alpha-(RE)(2)B(4)O(9) (RE=Eu, Gd, Tb) revealed: C2/c, Z=20, alpha-Eu(2)B(4)O(9): a=2547.9(5), b=444.3(1), c=2493.8(5) pm, beta=99.82(3) degrees, R1=0.0277, wR2=0.0693 (all data); alpha-Gd(2)B(4)O(9): a=2539.0(1), b=443.3(1), c=2490.8(1) pm, beta=99.88(1) degrees, R1=0.0457, wR2=0.0643 (all data); alpha-Tb(2)B(4)O(9): a=2529.4(1), b=441.6(1), c=2484.3(1) pm, beta=99.88(1) degrees, R1=0.0474, wR2=0.0543 (all data). The isotypic compounds exhibit a new type of structure that is built up of BO(4) tetrahedra to form a network that incorporates the rare-earth cations. The most important feature is the existence of the new structural motif of edge-sharing BO(4) tetrahedra next to the known motif of corner-sharing BO(4) tetrahedra, which is realized in the presented compounds alpha-(RE)(2)B(4)O(9) (RE=Eu, Gd, Tb, Dy) for the second time. Furthermore, we report the temperature-resolved in-situ powder-diffraction measurements, DTA, IR/Raman spectroscopic investigations, and magnetic properties of the new compounds.  相似文献   

3.
4.
To date, the access to the substance class of borates containing nitrogen, for example, nitridoborates, oxonitridoborates, or amine borates, was an extreme effort owing to the difficult starting materials and reaction conditions. Although a number of compounds containing boron and nitrogen are known, no adduct of ammonia to an inorganic borate has been observed so far. A new synthetic approach starting from the simple educts CdO, B2O3, and aqueous ammonia under conditions of 4.7 GPa and 800 °C led to the synthesis of Cd(NH3)2[B3O5(NH3)]2 as the first ammine borate. We thoroughly characterized this compound on the basis of low‐temperature single‐crystal and powder X‐ray diffraction data, IR and Raman spectroscopy, and by quantum theoretical calculations. This contribution shows that the adduct of NH3 to the BO3 group of a complex B–O network can be stabilized, opening up a fundamentally new synthetic route to nitrogen‐containing borates.  相似文献   

5.
6.
7.
Coordination numbers higher than usual are often associated with superior mechanical properties. In this contribution we report on the synthesis of the high‐pressure polymorph of highly condensed phosphorus nitride imide P4N6(NH) representing a new framework topology. This is the first example of phosphorus in trigonal‐bipyramidal coordination being observed in an inorganic network structure. We were able to obtain single crystals and bulk samples of the compound employing the multi‐anvil technique. γ‐P4N6(NH) has been thoroughly characterized using X‐ray diffraction, solid‐state NMR and FTIR spectroscopy. The synthesis of γ‐P4N6(NH) gives new insights into the coordination chemistry of phosphorus at high pressures. The synthesis of further high‐pressure phases with higher coordination numbers exhibiting intriguing physical properties seems within reach.  相似文献   

8.
Isotypic imidonitridophosphates MH4P6N12 (M=Mg, Ca) have been synthesized by high‐pressure/high‐temperature reactions at 8 GPa and 1000 °C starting from stoichiometric amounts of the respective alkaline‐earth metal nitrides, P3N5, and amorphous HPN2. Both compounds form colorless transparent platelet crystals. The crystal structures have been solved and refined from single‐crystal X‐ray diffraction data. Rietveld refinement confirmed the accuracy of the structure determination. In order to quantify the amounts of H atoms in the respective compounds, quantitative solid‐state 1H NMR measurements were carried out. EDX spectroscopy confirmed the chemical compositions. FTIR spectra confirmed the presence of NH groups in both structures. The crystal structures reveal an unprecedented layered tetrahedral arrangement, built up from all‐side vertex‐sharing PN4 tetrahedra with condensed dreier and sechser rings. The resulting layers are separated by metal atoms.  相似文献   

9.
The modular compound [Mn(3+x) O(7) ][Bi(4) O(4.5-y) ] contains a rare example of true 2D maple-leaf lattice of edge-sharing Mn(3+/4+) . This compound displays a magnetic transition at 210?K without evidence for a Néel ordering, which indicates in-plane 2D antiferromagnetism.  相似文献   

10.
11.
12.
13.
14.
15.
Phosphorus nitride imide, PN(NH), is of great scientific importance because it is isosteric with silica (SiO2). Accordingly, a varied structural diversity could be expected. However, only one polymorph of PN(NH) has been reported thus far. Herein, we report on the synthesis and structural investigation of the first high‐pressure polymorph of phosphorus nitride imide, β‐PN(NH); the compound has been synthesized using the multianvil technique. By adding catalytic amounts of NH4Cl as a mineralizer, it became possible to grow single crystals of β‐PN(NH), which allowed the first complete structural elucidation of a highly condensed phosphorus nitride from single‐crystal X‐ray diffraction data. The structure was confirmed by FTIR and 31P and 1H solid‐state NMR spectroscopy. We are confident that high‐pressure/high‐temperature reactions could lead to new polymorphs of PN(NH) containing five‐fold‐ or even six‐fold‐coordinated phosphorus atoms and thus rivalling or even surpassing the structural variety of SiO2.  相似文献   

16.
The chemical and physical properties of phosphorus oxonitride (PON) closely resemble those of silica, to which it is isosteric. A new high‐pressure phase of PON is reported herein. This polymorph, synthesized by using the multianvil technique, crystallizes in the coesite structure. This represents the first occurrence of this very dense network structure outside of SiO2. Phase‐pure coesite PON (coe‐PON) can be synthesized in bulk at pressures above 15 GPa. This compound was thoroughly characterized by means of powder X‐ray diffraction, DFT calculations, and FTIR and MAS NMR spectroscopy, as well as temperature‐dependent diffraction. These results represent a major step towards the exploration of the phase diagram of PON at very high pressures and the possibly synthesis of a stishovite‐type PON containing hexacoordinate phosphorus.  相似文献   

17.
18.
Repeating boundaries: The buried interfaces in artificial heterostructures produced by sequential deposition of nanosized units are critical to their properties. With density functional theory it was shown that in Y(2) O(3) :ZrO(2) (YSZ) and SrTiO(3) (STO) heterostructures reconstruction of the interfaces between the component units is required to access the most favorable structure.  相似文献   

19.
The use of high-pressure/high-temperature conditions (7.5 GPa and 1100 degrees C; Walker-type multianvil apparatus) led to the synthesis of a new cadmium borate CdB2O4, starting from stoichiometric mixtures of the oxides. The crystal structure was determined on the basis of single crystal X-ray diffraction data, to reveal the hexagonal space group P6(3) with a=885.2(2), c=716.72(8) pm, Z=8, R1=0.0178, and wR2=0.0388 (all data). CdB2O4 is built up from interconnected layers of BO4-tetrahedra and exhibits for the first time the basic structure of a family of compounds, represented by BaGa2O4, KAlSiO4, KGeAlO4, KCoPO4, CaP2N4 and the recently discovered SrP2N4. The lack of superstructure ordering in CdB2O4 was confirmed by electron diffraction. Additionally, a B--O--B angle of 180 degrees was found in this borate for the first time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号