首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graphene oxide aerogel synthesized from graphene oxide hydrogel and graphene aerogels have been synthesized using the sol?gel method by reducing a suspension of graphene oxide with various reducing agents: a mixture of hypophosphorous acid and iodine, L-ascorbic acid, sodium metabisulfite, and by hydrothermal treatment. The obtained aerogels have been studied by scanning electron microscopy, IR spectroscopy, Raman spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Comparative studies of graphene aerogels have shown that their properties, namely density, specific surface area, reduction degree, surface morphology, defectiveness of graphene sheets, interlayer spacing, average sizes of coherent scattering regions, number of layers, and crystallite size in the basal plane in graphene crystallites depend on the method of synthesis.  相似文献   

2.
水溶性的CdSe/CdS/ZnS量子点的合成及表征   总被引:3,自引:0,他引:3  
L-半胱氨酸盐(Cys)作为稳定剂,合成了水溶性的双壳结构的CdSe/CdS/ZnS半导体量子点。吸收光谱和荧光光谱结果表明,双壳结构的CdSe/CdS/ZnS纳米微粒比单一的CdSe核纳米粒子和单核壳结构的CdSe/CdS纳米粒子具有更优异的发光特性。用透射电子显微镜(TEM)、ED、XRD、XPS和FTIR等方法对CdSe核和双壳层的CdSe/CdS/ZnS纳米微粒的结构、分散性及形貌分别进行了表征。  相似文献   

3.
Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900?°C, beyond where silica aerogels reach their upper temperature use limits. Aerogels have been synthesized at two Al:Si ratios, a 3Al:1Si mullite composition, and an 8Al:1Si alumina rich composition. Boehmite (AlOOH) is used as the Al source, and tetraethoxysilane as the Si precursor. The influence of Ti as a ternary constituent, introduced through the addition of titanium isopropoxide in the sol?Cgel synthesis, on aerogel morphology and thermal properties is evaluated. Four different boehmite precursor powders are evaluated. Morphology, surface area and pore size, and thermal transformation vary with the crystallite size of the starting boehmite powder, as does incorporation of titanium and evolution of Ti-containing crystalline phases. The addition of Ti influences sol viscosity, gelation time, surface area and pore size distribution, as well as phase formation on heat treatment.  相似文献   

4.
Interest in improving the optical transmission of sodium silicate-based aerogels by ambient pressure drying led to the synthesis of aerogels using a two-step sol–gel process. To produce optically transparent silica aerogel granules, NH4F (1 M) and HCl (4 M) were used as hydrolyzing and condensation catalysts, respectively. The silica aerogels were characterized by their bulk density, porosity (%), contact angle and thermal conductivity. Optical transmission of as synthesized aerogels was studied by comparing the photos of aerogel granules. Scanning electron microscopic study showed the presence of fractal structures in these aerogels. The degree of transparency in two step sol–gel process-based aerogels is higher than the conventional single step aerogels. The N2 adsorption–desorption analysis depicts that the two step sol–gel based aerogels have large surface areas. Optically transparent silica aerogels with a low density of ∼0.125 g/cc, low thermal conductivity of ∼0.128 W/mK and higher Brunauer, Emmett, and Teller surface area of ∼425 m2/g were obtained by using NH4F (1 M), HCl (4 M), and a molar ratio of Na2SiO3::H2O::trimethylchlorosilane of 1::146.67::9.46. The aerogels retained their hydrophobicity up to 500 °C.  相似文献   

5.
Silica aerogels were prepared using the precursor tetraethylorthosilicate (TEOS) via a rapid supercritical extraction (RSCE) method. Multiple consistent batches of monolithic TEOS-based aerogels were fabricated via an 8-h RSCE process. Fabricating TEOS-based aerogels with an RSCE method offers some distinct advantages. One advantage is the relative simplicity of the RSCE approach: liquid precursors are mixed and poured into a metal mold in a hydraulic hot-press, where gelation, aging and extraction of liquid from the pores occur. The precursor recipe employs TEOS, ethanol, water, oxalic acid to catalyze hydrolysis, and ammonia to catalyze the subsequent polycondensation reactions. Another advantage is that reaction of TEOS to form sol gels yields ethanol as a byproduct. A process that releases ethanol, rather than methanol (as in tetramethylorthosilicate (TMOS)-based aerogels) may be more appealing for commercial applications, involving scale-up of the process. The significantly lower cost of TEOS, compared to TMOS, is a considerable advantage. The TEOS-based RSCE aerogels are mesoporous and optically translucent, have bulk densities of 0.099(±0.003) g/cm3 and surface areas of 460(±10) m2/g. Signals observed in infrared and Raman spectra of the aerogels are consistent with Si–O framework bonds. Using scanning electron microscopy imaging, the surface morphology of the aerogel samples was imaged at magnifications up to 150 kX.  相似文献   

6.
A label-free photoelectrochemical aptasensor for the sensitive and selective determination of carcinoembryonic antigen was constructed based on a CdS quantum dot sensitized TiO2 nanotube electrode. TiO2 nanotubes with highly ordered structure and more active sites than bulk TiO2 were prepared with an electrochemical anodic oxidation process. The CdS quantum dots were immobilized on the TiO2 nanotubes using poly(diallyldimethylammonium chloride) as a bridge. Due to the energy level match between TiO2 and CdS, the CdS quantum dots/TiO2 nanotubes electrode exhibits excellent photoelectrochemical performance. The large surface area of the electrode also allows for capturing large numbers of aptamers. The fine photoelectrochemical performance and the large surface area of the electrode greatly enhanced the detection sensitivity. Under the optimal conditions, the prepared photoelectrochemical aptasensor presents desirable analytical properties for the determination of carcinoembryonic antigen in the range of 0.05 to 10?ng?mL?1 with a detection limit of 0.014?ng?mL?1. The application of the designed protocol was investigated by analyzing carcinoembryonic antigen in human serum samples with recoveries from 80.0 to 115.0%. This simple and sensitive method provides an alternative tool to standard biochemical assays.  相似文献   

7.
一种Q态纳米CdS的新型制备法——聚合物分散法   总被引:6,自引:0,他引:6  
闫云辉  章伟光  范军  纪欣 《化学学报》2005,63(14):1303-1306
采用一种Q态CdS的新型制备法——聚合物分散法, 即用水溶性聚合物溶液作为分散剂, 用2-巯基乙醇(或十二硫醇)作表面修饰剂, 在聚合物网络中构筑出四种粒径的、单分散性的Q-CdS. 通过UV-Vis光谱和TEM考察了Q-CdS的粒径及分布情况, 并用FL光谱研究了不同尺寸的Q-CdS的荧光性能. 结果表明, 采用聚合物分散法可以方便、快捷地得到粒径小且分布窄的Q-CdS纳米粒子, 这些粒子在紫外光谱及荧光光谱上均表现出明显的量子尺寸效应.  相似文献   

8.
非超临界干燥法制备SiO2气凝胶   总被引:26,自引:2,他引:26  
应用廉价的国产硅溶胶为原料,通过凝胶过程和干燥过程条件的选择,以非超临界干燥技术最终获得了块状SiO2气凝胶.该气凝胶外观状态与应用正硅酸乙酯为原料制得的完全一致,其微观结构也相当良好,其直径和孔分布均匀.溶液的配比和pH对凝胶过程和气凝胶样品的密度有比较明显的影响,同时pH值与SiO2的粒径之间也有一定的关系.依据制备条件的变化,所得SiO2气凝胶的密度约在200~400 kg•m-3,比表面在250~300 m2•g-1之间变化,平均孔径约为11~20 nm,而孔隙率在91%左右.  相似文献   

9.
In this study, organic aerogels were synthesized by the sol–gel polycondensation of mixed cresol with formaldehyde in a slightly basic aqueous solution. Carbon aerogels and xerogels are generated by pyrolysis of organic aerogels. The novel sol–gel‐based micro‐solid‐phase extraction sorbent, resorcinol–formaldehyde xerogel, was employed for preconcentration of some selected herbicides. Three herbicides of the aryloxyphenoxypropionate group, clodinafop‐propargyl, haloxyfop‐etotyl, and fenoxaprop‐P‐ethyl, were extracted from aqueous samples by micro‐solid‐phase extraction and subsequently determined by gas chromatography with mass spectrometry. The effect of different parameters influencing the extraction efficiency of these herbicides including sample flow rate, sample volume, and extraction time were investigated and optimized. Under optimum conditions, linear calibration curves in the range of 0.10–500 ng/L with R2 > 0.99 were obtained. The relative standard deviation at 50 μg/L concentration level was lower than 10% (n = 5) and detection limits were between 0.05 and 0.20 μg/L. The proposed method was successfully applied to the sampling and extraction of herbicides from Zayanderood and paddy water samples.  相似文献   

10.
TiO2–SiO2 composite aerogels were prepared via ambient pressure drying by sol–gel and surface modification for both the sol and gel samples. The organosilane reagents of decamethyltetrasiloxane (DMTSO)/trimethylchlorosilane (TMCS) and hexamethyldisiloxane (HMDSO)/TMCS were introduced into the TiO2–SiO2 composite sol for pre-modification respectively, and subsequently the TMCS/hexane solution was used for surface modification of the obtained TiO2–SiO2 composite gel. The effects of sol pre-modification on the microstructure and pore characteristics of TiO2–SiO2 composite aerogels were investigated. The results indicate that HMDSO/TMCS coupling reagents is more appropriate for the pre-modification of TiO2–SiO2 composite sol than the DMTSO/TMCS reagents. The best volume ratio of HMDSO/TMCS/composite sol for preparing mesoporous TiO2–SiO2 composite aerogels is in the range of 1:0.33:10–1:1.0:10, with which the specific surface area and pore volume of the obtained TiO2–SiO2 composite aerogels are 492–645 m2/g and 2.63–2.85 m3/g, respectively. The results of adsorption and photocatalytic degradation of rhodamine B show that the as-prepared TiO2–SiO2 composite aerogels have higher adsorption/photocatalysis. Particularly, the as-prepared TiO2–SiO2 composite aerogels with HMDSO/TMCS showed prominent adsorption capability with the adsorption rate attaining to 89.4 % within 60 min.  相似文献   

11.
Freestanding blocks of silica and titania-silica aerogels were prepared by the sol-gel method. It is possible to prepare crack-free, titania-silica aerogels with high titanium content by a careful control of the synthesis conditions. Prehydrolysis, complexation and polymer addition were used to adjust the hydrolysis and condensation rates of the silicon and titanium alkoxide precursors. Photoactive anatase TiO2 nanocrystals with a large surface area (i.e., up to 300m2g−1) were crystallized from the gel network by the high-temperature ethanol supercritical drying, and the resulting aerogel blocks were gas permeable and display a transition-regime diffusion behavior. Pore and volume shrinkages were observed in samples prepared by ethanol supercritical drying when the titanium content was increased resulting in a lower flux. Adding Pluronic P123 creates ordered mesopore domains and produces large pore aerogels even at high titanium contents. The photocatalytic oxidation reaction of trichloroethylene was performed by flowing the reactant gas mixture through the UV-irradiated aerogel blocks with excellent results.  相似文献   

12.
单源前体合成水溶性的CdS和ZnS纳米晶   总被引:1,自引:0,他引:1  
0引言量子点(QuantumDots)一般指半径小于或接近玻尔激子半径的半导体纳米晶颗粒。和有机染料分子相比,无机半导体纳米晶的带隙宽度可通过简单  相似文献   

13.
Cadmium sulfide (CdS) quantum dots (QDs) encapsulated in block copolymer spheres were synthesized by an aqueous emulsion polymerization process. First, stable dispersions of CdS QDs in water were prepared using a polymer dispersant, either poly(acrylic acid) or a random copolymer having an average of ten acrylic acid and five butyl acrylate units. These polymer dispersants were prepared by reversible addition-fragmentation chain transfer polymerization. Then, the CdS QDs dispersed in water were encapsulated in a polystyrene shell using an emulsion polymerization process. Spectroscopic and microscopic techniques were used to characterize the resulting nanocomposites. Optical properties of QDs in polymer microspheres were investigated by UV-vis and fluorescence spectroscopic studies. Particle sizes of all CdS QD samples were calculated from absorption edges using Henglein's empirical curve. Transmission electron microscopy was used to determine the size and morphology of CdS QD samples. These observations were used to elucidate the mechanism of formation of the resulting well-defined polymer-encapsulated CdS nanoparticles.  相似文献   

14.
The hydrophobic property is one of the most important requirements for the long-term use of silica aerogels for transparent or translucent window insulation and opaque thermal insulating systems. Therefore, the present paper deals with the synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane (TMES) as a co-precursor. Silica sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS) precursor, methanol (MeOH) solvent, water (H2O) and ammonia (NH4OH) catalyst constant at 1:12:4:3.7 × 10–3 respectively throughout the experiments and the TMES/TMOS molar ratio (A) was varied from 0 to 2.35. The resulting silica alcogels were dried supercritically by high-temperature alcohol solvent extraction. Hydrophobicity of the aerogels was tested by measuring the percentage of water adsorbed by the aerogels after putting them directly on the surface of water under humid conditions. Alternately, the hydrophobicity was also tested by contact angle measurements. It was found that as the A value increased, the hydrophobicity of the aerogels increased but the optical transmission decreased from 93% to less than 5% in the visible range. The thermal stability of the aerogels was studied in the temperature range from 25 to 400°C. The hydrophobic nature of the aerogels was maintained up to a temperature of 300°C. The aerogels were characterized by infrared spectroscopy, optical transmittance, Scanning electron microscopy (SEM) and contact angle measurements. The results have been discussed by taking into account the hydrolysis and condensation mechanisms.  相似文献   

15.
Titanium dioxide (TiO2) aerogels were prepared with sol–gel ambient pressure drying method by using titanium tetrachloride (TiCl4) as precursor and tetraethoxysilane as modifier, calcinated at different temperature and characterized by X‐ray diffraction, transmission electron microscopy and small angle X‐ray scattering. The results showed that the TiO2 aerogels remained amorphous under 500 °C, changed to anatase from 600 °C and further changed to rutile from 900 °C. Between 60 °C and 500 °C, the primary particles within the samples concentrated mainly upon small sizes, enlarged and diverged remarkably above 600 °C. The crystalline grains grew and agglomerated with the rise of the calcination temperature. The TiO2 aerogels at a temperature higher than 800 °C have better stability than anatase because of the formation of partial Ti―O―Si bonds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.

Hydrophobic silica aerogels were prepared via a sol‐gel process by surface modification at ambient pressure. Nonwoven fibers were distributed inside the silica aerogels as a composite to act as a supporting skeleton which increased the mechanical property of the silica aerogels. The morphology and pore structure of the composites were characterized by scanning electron microscopy (SEM) and N2 adsorption analyzer. The contact angle and the adsorption capacities of the composites were also determined. The results show that silica aerogels dispersed uniformly and maintained high porosity in the aerogel‐fiber composites. They have excellent hydrophobic properties and are excellent adsorptive materials.  相似文献   

17.
铁锰复合氧化物的氧化还原沉淀法制备及其表征   总被引:1,自引:0,他引:1  
马军  张新杰 《分子催化》1999,13(4):241-245
分别采用氧化还原沉淀法和常规共沉淀法制备得到铁锰复合氧化物, 并对样品进行了 X射线衍射、 B E T比表面积、程序升温还原的初步表征和比较. 结果表明, 与常规共沉淀法制备的样品相比较, 采用氧化还原沉淀法制备的铁锰复合氧化物具有粒径较小、较大的比表面积、铁锰互溶性好、铁锰物种之间的相互作用较强等特点. 作为一种较为新颖的催化剂制备方法, 氧化还原沉淀法利用在高低价可变金属离子之间发生氧化还原反应的同时使之沉淀, 不利于各相单独形成微晶, 有利于不同金属离子的均匀混合. 此种方法对制备高比表面积、含变价过渡金属离子的各类复合氧化物催化剂有其独到之处.  相似文献   

18.
We report on the successful synthesis of CdSe nanoparticles (NPs) via a facile aqueous approach. Investigation on the effects of various cadmium sources in the precursor solution on the CdSe NPs is discussed. The structural and morphological properties characterized by the X-ray diffraction (XRD) and scanning electron microscope (SEM) displayed good features of the as-prepared CdSe NPs. The XRD pattern displayed a pure zinc blende crystal structure for all samples, with the most crystalline sample observed for CdSe NPs prepared using anhydrous cadmium chloride. The estimated crystallite sizes were below 6 nm for all the CdSe NPs samples. Mixed shapes of spherical and nanorods of varying sizes were observed from the SEM images for the as-prepared NPs prepared using different cadmium sources. The optical studies conducted by photo-spectroscopy pointed out the CdSe NPs prepared using anhydrous cadmium chloride gave the best optical properties. The emission wavelengths were in the range 565 to 574 nm while the optical band gaps were in the range 2.94 to 3.23 eV for all the as-prepared CdSe NPs samples. All the samples, however, displayed quantum confinement effects giving room for further fabrication and engineering to suit specific applications in the biological field. The obtained results demonstrated that aqueous phase synthetic route employed in this study could be successfully adopted for production of high-quality CdSe NPs because of its facile and inexpensive nature.  相似文献   

19.
Blue-emitting colloidal CdS nanocrystals have been synthesized through the solvothermal reaction of cadmium acetate and thiourea in N,N-dimethylformamide using poly(ethylene oxide; PEO) as the stabilizing polymer. The as-prepared CdS colloids were stable at ambient conditions for several weeks. The PEO-stabilized CdS colloids showed a narrow fluorescence band with the maximum at about 420 nm and thus emitting blue fluorescence under the ultraviolet (UV) lamp. A common red shift of fluorescence band is not detected for the prepared CdS colloids in the study, indicating that PEO-stabilized CdS NCs possess few crystalline defects on their surface. In addition, transmission electron microscope micrographs reveal that the sizes of CdS NCs are between 4.4 to 5.4 nm with small standard deviations from 0.5 to 0.7 nm. The particle growth kinetics was studied by monitoring UV-visible absorption onsets versus the reaction time and was found to nearly follow the Lifshitz–Slyozov–Wagner theory for the Ostwald ripening mechanism.  相似文献   

20.
ZnO nanorod thin films of different thicknesses and CdS quantum dots have been prepared by chemical method. X-ray diffraction pattern reveals that the CdS quantum dot and ZnO nanorods are of hexagonal structure. Field emission scanning electron microscope images show that the diameter of hexagonal shaped ZnO nanorods ranges from 110 to 200 nm and the length of the nanorod vary from 1.3 to 4.7 μm. CdS quantum dots with average size of 4 nm have been deposited onto ZnO nanorod surface using successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with ZnO nanorod has been used as photo-electrode in quantum dot sensitized solar cells. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 1.10 % and is the best efficiency reported so far for this type of solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号