首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
本文首次通过pH值控制沉淀法制备前驱物丁二酸钛肼复盐,并进一步热分解制备大比表面积钛黑颜料-黑色钛氧化物。通过比表面积(BET)、电子能谱(EDS)、X射线光电子能谱分析(XPS)、X射线粉末衍射(XRD)、场发射扫描电子显微镜(HRSEM)、物理吸附仪、激光粒度仪和Color i5型台式分光测色仪对黑色钛氧化物进行了表征,确定了黑色钛氧化物的组成为2TiO2·Ti2O3,其表面积为53.854 4 m2·g-1。并考察了酸源、水合肼用量、酸钛比、反应时间、pH、NaOH浓度和煅烧温度等各种反应参数对黑色钛氧化物的颗粒尺寸、分布均匀性和黑色度的影响。用元素分析仪和等离子体光谱仪测定了前驱物组成,确定其组成为[Ti(C4H4O4)2]0.85·2Ti2O3·6N2H4·3H2O,并探讨了黑色钛氧化物形成机理,为新型混合价材料黑色钛氧化物的制备提供重要参考依据。  相似文献   

2.
三氯化钛分别与苹果酸铵、酒石酸铵和柠檬酸铵反应,制得三种新的固态配合物:苹果酸羟基钛(Ⅲ)、酒石酸羟基钛(Ⅲ)和柠檬酸钛(Ⅲ)(化学式分别为Ti(OH)(C4H4O5)·1.5H2O、Ti(OH)(C4H4O6)·1.5H2O和Ti(C6H5O7)·1.5H  相似文献   

3.
通过溶剂热合成方法,以水杨醛肟(H2Saox)和乙酰氧肟酸(H2Ahox)为染料敏化功能配体,分别以异丁酸(HiBuac)和苯基膦酸(PhPO3H2)为辅助配体,与钛酸四异丙酯(Ti (OiPr)4)反应,合成了六核钛氧簇配合物[Ti6(μ3-O)4(Saox)2(iBuac)4(OiPr)8](1)和八核钛氧簇配合物[Ti8(μ3-O)2(Ahox)2(PhPO3)4(OiPr)16](2)。配合物12均通过红外光谱、元素分析和单晶X射线衍射进行了结构表征。光谱性质表明,配合物12在可见光区均有吸收,其带隙分别为2.43和2.61 eV。配合物2是首个基于乙酰氧肟酸的钛氧簇,具有光催化析氢性能且速率可达140.2 μmol·g-1·h-1。  相似文献   

4.
Li4Ti5O12/(Cu+C)复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
以Li4Ti5O12,Cu(CH3COO)2·H2O和C6H12O6为前驱体,化学沉积与热分解结合合成锂离子电池负极材料Li4Ti5O12/(Cu+C)。采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电、循环伏安和电化学阻抗方法表征样品的结构、形貌和电化学性能。结果表明,Li4Ti5O12表面包覆的Cu与C提高了Li4Ti5O12电极材料的导电率,其循环性能和倍率性能得到有效地改善。在0.5C、1C和3C倍率下,经过50次充放电循环,放电比容量分别为168.2、160、140.6 mAh·g-1,其容量保持率分别为88.7%、84.4%、71.2%。电化学阻抗测试表明,表面包覆的Cu与C使其电荷转移阻抗大幅度减少。  相似文献   

5.
通过分步沉积法制备了不同Zr/Ti 摩尔比的锶锆钛(SZT)复合氧化物催化剂, 以X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见(UV-Vis)漫反射光谱等表征手段考察不同Zr/Ti 摩尔比下SZT催化剂的结构形态, 以可见光下光催化降解亚甲基蓝为模型反应考察样品的光催化活性. 结果表明: Zr/Ti 摩尔比<1 时SZT催化剂发生Zr4+与Ti4+同质替换, 引起晶格缺陷, 光催化活性小幅提高; Zr/Ti 摩尔比≥1 时SZT催化剂产生SrZrO3/TinO2n-1 (n=4, 9)的新晶相, TinO2n-1 (n=4, 9)的存在有利于光生电子-空穴的传导与分离, 可大幅提高催化剂光催化活性. 其中, SZT-5/5 表现出最高的光催化活性, 其一级反应速率常数达到0.2133 min-1, 是同等光照条件下纯SrTiO3样品(0.0158 min-1)的13.5倍.  相似文献   

6.
Cr掺杂对K2La2Ti3O10光催化活性的影响   总被引:1,自引:0,他引:1  
通过溶胶-凝胶法制备了层状钙钛矿结构的K2La2Ti3O10及Cr掺杂的K2La2Ti3O10,采用X-射线衍射(XRD)、紫外可见漫反射光谱(DRS)、X射线光电子能谱(XPS)等对K2La2Ti3O10及Cr掺杂K2La2Ti3O10进行了表征。以I-为电子给体、分别在紫外和可见光辐射下研究了K2La2Ti3O10及Cr掺杂K2La2Ti3O10光催化分解水的产氢活性。采用第一性原理,计算了Cr掺杂对K2La2Ti3O10半导体能带结构和态密度的影响,从电子结构的变化揭示了掺杂引起光催化活性差异的原因。结果表明,Cr的掺入能够改善和提高K2La2Ti3O10的光解水的产氢活性;Cr改善和提高K2La2Ti3O10的光解水的产氢活性存在一个最佳的掺杂浓度;当Cr与Ti的物质量的比为0.02∶1时,紫外光催化分解水产氢速率为1 500 μmol·L-1·h-1,可见光催化分解水产氢速率为83.6 μmol·L-1·h-1,分别为K2La2Ti3O10掺杂改性前产氢速率的26和5倍。  相似文献   

7.
方钧  石富城  包蕙质  千坤  姜志全  黄伟新 《催化学报》2013,34(11):2075-2083
利用X射线衍射、N2吸附等温线、X射线光电子能谱、X射线吸收谱、H2-程序升温还原、甲基橙选择化学吸附和等电点测定等方法研究了共沉淀方法制备的一系列CexTi1-xO2复合氧化物的结构. 成功发展了甲基橙选择化学吸附和等电点方法研究CexTi1-xO2复合氧化物的最外层表面结构, 并定义了“等价CeO2表面覆盖度”来描述CexTi1-xO2复合氧化物的最外层表面结构. CexTi1-xO2复合氧化物 (x ≥ 0.7)形成立方萤石相固溶体, Ce0.3Ti0.7O2表现出纯的单斜相, 而其它复合氧化物表现出混合相. CexTi1-xO2复合氧化物最外层表面结构的演变行为不同于其体相结构.Ce0.7Ti0.3O2立方萤石相固溶体最外层表面已经部分形成了单斜相Ce0.3Ti0.7O2, 随Ce含量的降低, 单斜相Ce0.3Ti0.7O2从最外层表面向体相生长. CexTi1-xO2复合氧化物立方萤石相固溶体和单斜相Ce0.3Ti0.7O2分别在相对较低和较高的温度表现出好的还原性能. 上述结果提供了全面和深层次的CexTi1-xO2复合氧化物结构信息.  相似文献   

8.
以H6P2Mo18O62·23H2O和(NH4)2C2O4·H2O为原料,首次采用室温固相反应合成出(NH4)6P2Mo18O62·12H2O纳米粉体,并运用元素分析、FTIR、XRD、TEM、TG-DTA和BET等技术对其组成、结构和性能进行了表征。发现(NH4)6P2Mo18O62·12H2O纳米粉体平均粒径为40 nm,保留着杂多阴离子的Dawson结构,具有Dawson结构的特征衍射峰,比表面积为143.9 m2·g-1,在445 ℃以下杂多阴离子有良好的热稳定性。在该固相反应中,研磨和放热反应热能可加速反应物分子的扩散速率和生成物分子的成核速率,使产物粒径减小;反应物含有结晶水和生成物H2C2O4·2H2O对形成小粒径的(NH4)6P2Mo18O62·12H2O纳米粉体起关键作用。  相似文献   

9.
采用溶剂热法-旋涂法构建了Sb2O3/BiVO4/WO3半导体异质结,并采用X射线衍射、扫描电子显微镜、X射线光电子能谱等手段表征了其物化性质。在1.23 V(vs RHE)电位下,BiVO4/WO3的光电流密度相对于BiVO4提高了2倍。进一步复合Sb2O3之后,虽然Sb2O3/BiVO4/WO3薄膜的光电流密度有所下降,但其光电催化产H2O2的法拉第效率和产生速率得到明显提升。在1.89V(vs RHE)电位下,3c-Sb2O3/BiVO4/WO3薄膜产 H2O2的法拉第效率提高到约 19%;1c-Sb2O3/BiVO4/WO3薄膜 H2O2产生速率从约2.1 μmol·h-1·cm-2提高到约3.6 μmol·h-1·cm-2。此外,Sb2O3的复合显著提高了BiVO4/WO3电极材料的光电催化稳定性。  相似文献   

10.
采用共沉淀法制备了Zr0.5Ti0.5O2载体材料,将其掺杂在CeO2-Al2O3 (CA)基催化剂中, 并对其催化活性进行了超临界裂解测试, 采用全自动吸附仪、X射线衍射(XRD)、透射电镜(TEM)、程序升温脱附(TPD)等方法对催化剂进行了表征. 实验结果表明, 催化剂能够明显降低裂解反应的温度, 600 ℃ CA基催化剂产气率是热裂解的2.8倍, 掺杂Zr0.5Ti0.5O2载体材料的CA基催化剂是热裂解的4.0倍, 650 ℃时, 掺杂Zr0.5Ti0.5O2载体材料的CA基催化剂热沉提高了0.55 MJ·kg-1. BET结果表明, 掺杂Zr0.5Ti0.5O2载体后催化剂出现双孔结构, 部分小孔的出现使得乙烯的选择性提高; NH3-TPD结果表明, 掺杂Zr0.5Ti0.5O2载体材料后, 催化剂强酸位的酸量增加了4.0倍,催化剂表现出更强的表面酸性和更集中的强酸酸中心密度, 有利于裂解多产烯烃.  相似文献   

11.
Potassium titanium silicate with a semicrystalline framework of the formula K3HTi4O4(SiO4)3·4H2O has been prepared under mild hydrothermal conditions and its protonic form, H4Ti4O4(SiO4)3·8H2O, was obtained by acid treatment of the potassium compound. A comparative ion exchange testing of the H4Ti4O4(SiO4)3·8H2O towards alkali and alkaline earth metals in a broad pH and concentration range was carried out. It was found that potassium titanium silicate is a moderately weak cation exchanger, possessing high ion exchange capacity (up to 4–5 meq/g) and showing preference for heavy alkali and alkaline earth metals uptake. The selectivity of K3HTi4O4(SiO4)3·4H2O towards Cs+ and Sr2+ ions in alkaline and acid media in the presence of competitive inorganic ions and certain organic compounds was also studied. The data obtained suggest that despite the existence of well defined tunnel structure with parameters fitting for cesium ion in the K3HTi4O4(SiO4)3·4H2O, potassium titanium silicate could remove cesium (and strontium) efficiently only under some specific conditions, namely, at pH close to neutral and in the absence of competitive ions and especially of organic complexing agents.  相似文献   

12.
The thermal emission of electrons is presented as a useful technique for the study of nonstoichiometric oxides at high temperature. Results are reported for yttria and titanium dioxide, very different in their respective properties. For these compounds the density of emitted current follows a simple law, JPxO2, where PO2 is the oxygen partial pressure and x is a constant that is not dependent on temperature. The electrical conductivity, when measured under the same conditions, follows a similar law. Therefore there is some evidence that at high temperature the chemisorption is not an important process, and the emission characteristics are then discussed in terms of a bulk nonstoichiometry. Data are obtained for yttrium oxide, as the width of the band gap Eg = 5.5 eV, the electron affinity χ = 2 eV. A reasonable defect for this oxide consists of oxygen vacancies VO and oxygen interstitials O2′i. The situation in the case of rutile is much more complicated as this oxide has a wide nonstoichiometric field with several suboxides and a nonisotropic structure. When the deviation to the stoichiometry is low the oxygen sublattice is stable and the main defects are titanium interstitials Tii. When the compound is more reduced a surface reorganization then occurs which seems related to a crystallographic transformation leading to the TinO2n?1 suboxides. This technique give a lot of data on the properties of nonstoichiometric compounds in the vicinity of the surface at high temperature.  相似文献   

13.
A new heterobimetallic nitrilotriacetatoperoxotitanate complex of titanium and lead [Pb(H2O)3]2[Ti2(O2)2O(nta)2]·4H2O (C6H6O6N=H3nta) was isolated in pure crystals directly from the solution containing tetrabutyl orthotitanate, hydrogen peroxoide, lead acetate, and nitrilotriacetic acid at pH = 2.0–4.0. The isolated complex was characterized by elemental analyses, IR spectrum, thermal analysis (TG), and single-crystal X-ray diffraction. The single-crystal X-ray structural analysis revealed that the titanium atom is N,O,O′,O′′-chelated by the nitrilotriacetate and O,O′-chelated by the peroxo group and was coordinated to the bridging O atom in an overall pentagonal-bipyramidal geometry. The thermal decomposition of this precursor led to the formation of phase-pure lead titanate (PbTiO3) at ≥450 °C. The morphology, microstructure, and crystalline of the resulting PbTiO3 product have been characterized by BET, transmission electron microscopy, and powder X-ray diffraction. The TEM micrographs revealed that the size of the as-synthesized crystallines to be 50–100 nm range. The BET measurement revealed that the PbTiO3 powders had a surface area of 5.6 m2/g.  相似文献   

14.
0引言近年来,柱撑法由于可以调节孔道结构和产物性能而被广泛用于制备高比表面的多孔催化剂及催化剂载体材料[1~3]。柱撑是指在无机层状主体化合物中引入客体聚合物阳离子,经热处理而形成二维多孔材料的过程[4]。以柱撑法在层状钛酸盐层间引入Keggin离子([Al13O4(OH)24(H2O)12]  相似文献   

15.
Peony‐like spinel Li4Ti5O12 was synthesized via calcination of precursor at the temperature of 400°C, and the precursor was prepared through a hydrothermal process in which the reaction of hydrous titanium oxide with lithium hydroxide was conducted at 180°C. The as‐prepared product was investigated by SEM, TEM and XRD, respectively. As anode material for lithium ion battery, the Li4Ti5O12 obtained was also characterized by galvanostatic tests and cyclic voltammetry measurements. It is found that the peony‐like Li4Ti5O12 exhibited high rate capability of 119.7 mAh·g−1 at 10 C and good capacity retention of 113.8 mAh·g−1 after 100 cycles at 5 C, and these results indicate the peony‐like Li4Ti5O12 has promising applications for lithium ion batteries with high performance.  相似文献   

16.
Synthesis of rutile pigments is based on solid state reaction and on Hedvall effect, i.e., phase transformation from anatase to rutile. Therefore, it is important to know the thermal behavior of these compounds (the temperature of this change). The goal was to prepare rutile pigments of type Ti1?3xCrxNb2xO2+x/2 by conventional solid state method from titanium dioxide TiO2 (AV-01, anatase), to determine an influence of composition (x = 0, 0.05, 0.10, 0.20, 0.30, 0.50) and calcination temperature (850; 900; 950; 1,000; 1,050; 1,100; 1,150 °C) on color properties of these compounds and to analyze other starting compounds of titanium (hydrated anatase paste TiO2·nH2O, titanyl sulfate dihydrate TiOSO4·2H2O (VKR 611), hydrated sodium titanium oxide paste Na2Ti4O9·nH2O) and their reaction mixtures for x = 0.05 by simultaneous TG–DTA analysis. According to the highest chroma C of color, the optimal conditions for synthesis of these pigments are concentration x = 0.05 and calcination temperature 1,050 °C and higher. It was observed that initial temperature 760–830 °C is needful for a formation of rutile structure. This temperature is the lowest for hydrated Na2Ti4O9 paste (760 °C) and similar for other starting compounds of titanium.  相似文献   

17.
Magneli phase titanium suboxide, Ti n O2n ? 1, with Brunauer–Emmett–Teller surface area up to 25 m2 g?1 was prepared using the heat treatment of titanium oxide (rutile) mixed with polyvinyl alcohol in ratios from 1:3 to 3:1. XRD patterns showed Ti4O7 as the major phase formed during the heat treatment process. The Ti n O2n ? 1 showed excellent electrochemical stability in the potential range of ?0.25 to 2.75 V vs. standard hydrogen electrode. The Ti n O2n ? 1 was employed as a polymer electrolyte membrane fuel cell catalyst support to prepare 20 wt% platinum (Pt)/Ti n O2n ? 1 catalyst. A fuel cell membrane electrode assembly was fabricated using the 20 wt% Pt/Ti n O2n ? 1 catalyst, and its performance was evaluated using H2/O2 at 80 °C. A current density of 0.125 A?cm?2 at 0.6 V was obtained at 80 °C.  相似文献   

18.
The formation of n-alkylammonium complexes was studied using Na2Ti3O7 and K2Ti4O9 and the results for both compounds were compared. Alkylammonium complexes could be obtained from H2Ti3O7 and H2Ti4O9·H2O, which were prepared by HCl treatment of Na2Ti3O7 and K2Ti4O9 respectivel The complexes were formed by exchange of H+ with alkylammonium ions. Molecular intercalation of alkylamine was also possible with H2Ti4O9·H2O. However, alkylammonium complexes were not formed directly from Na2Ti3O7 and from K2Ti4O9. Orientations of alkylammonium ions in the interlayer are also discussed in relation to the structure of the titanate layers.  相似文献   

19.
Different precursors can have different effects upon the properties of materials. In this paper, two different tin precursors, i.e., tin (IV) chloride pentahydrate (SnCl4·5H2O) and tin (IV) t-butoxide (Sn(OC4H9)4) have been used to prepare Zr0.8Sn0.2TiO4 powders. The dry gel and powder were characterized by Simultaneous DTA/TGA analysis (SDT), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Accelerated surface area and porosimetry analyzer (ASAP). The results show less weight loss for dry gel from precursor SnCl4·5H2O than that of Sn(OC4H9)4. The onset of polycrystalline ZST nano powders occurred at 450 °C from precursor SnCl4·5H2O which is 50 °C lower than that of Sn(OC4H9)4. Even though the powders from SnCl4·5H2O had a specific surface area of 30.4 m2/g which is higher than that of 28.7 m2/g from Sn(OC4H9)4. The crystallite size of ZST powders were about the same around 15 nm. This may be due to the powders are more aggregated in Sn(OC4H9)4 system. Two major mechanisms are proposed for above differences in morphology and the formation of powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号